Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 4 de 4
Filter
Add filters








Year range
1.
Protein & Cell ; (12): 497-512, 2023.
Article in English | WPRIM | ID: wpr-982529

ABSTRACT

Age-dependent loss of skeletal muscle mass and function is a feature of sarcopenia, and increases the risk of many aging-related metabolic diseases. Here, we report phenotypic and single-nucleus transcriptomic analyses of non-human primate skeletal muscle aging. A higher transcriptional fluctuation was observed in myonuclei relative to other interstitial cell types, indicating a higher susceptibility of skeletal muscle fiber to aging. We found a downregulation of FOXO3 in aged primate skeletal muscle, and identified FOXO3 as a hub transcription factor maintaining skeletal muscle homeostasis. Through the establishment of a complementary experimental pipeline based on a human pluripotent stem cell-derived myotube model, we revealed that silence of FOXO3 accelerates human myotube senescence, whereas genetic activation of endogenous FOXO3 alleviates human myotube aging. Altogether, based on a combination of monkey skeletal muscle and human myotube aging research models, we unraveled the pivotal role of the FOXO3 in safeguarding primate skeletal muscle from aging, providing a comprehensive resource for the development of clinical diagnosis and targeted therapeutic interventions against human skeletal muscle aging and the onset of sarcopenia along with aging-related disorders.


Subject(s)
Animals , Humans , Sarcopenia/metabolism , Forkhead Box Protein O3/metabolism , Muscle, Skeletal/metabolism , Aging/metabolism , Primates/metabolism
2.
Article in Chinese | WPRIM | ID: wpr-982123

ABSTRACT

OBJECTIVE@#To investigate the effect of baicalin on the growth of extranodal NK/T cell lymphoma (ENKTCL) cells and its related mechanism.@*METHODS@#Normal NK cells and human ENKTCL cells lines SNK-6 and YTS were cultured, then SNK-6 and YTS cells were treated with 5, 10, 20 μmol/L baicalin and set control. Cell proliferation and apoptosis was detected by Edu method and FCM method, respectively, and expressions of BCL-2, Bax, FOXO3 and CCL22 proteins were detected by Western blot. Interference plasmids were designed and synthesized. FOXO3 siRNA interference plasmids and CCL22 pcDNA overexpression plasmids were transfected with PEI transfection reagent. Furthermore, animal models were established for validation.@*RESULTS@#In control group and 5, 10, 20 μmol/L baicalin group, the proliferation rate of SNK-6 cells was (56.17±2.96)%, (51.92±4.63)%, (36.42±1.58)%, and (14.60±2.81)%, respectively, while that of YTS cells was (58.85±2.98)%, (51.38±1.32)%, (34.75±1.09)%, and (15.45±1.10)%, respectively. In control group and 5, 10, 20 μmol/L baicalin group, the apoptosis rate of SNK-6 cells was (5.93±0.74)%, (11.78±0.34)%, (28.46±0.44)%, and (32.40±0.37)%, respectively, while that of YTS cells was (7.93±0.69)%, (16.29±1.35)%, (33.91±1.56)%, and (36.27±1.06)%, respectively. Compared with control group, the expression of BCL-2 protein both in SNK-6 and YTS cells decreased significantly (P<0.001), and the expression of Bax protein increased in SNK-6 cells only when the concentration of baicalin was 20 μmol/L (P<0.001), while that in YTS cells increased in all three concentrations(5, 10, 20 μmol/L) of baicalin (P<0.001). The expression of FOXO3 protein decreased while CCL22 protein increased in ENKTCL cell lines compared with human NK cells (P<0.001), but the expression of FOXO3 protein increased (P<0.01) and CCL22 protein decreased after baicalin treatment (P<0.001). Animal experiments showed that baicalin treatment could inhibit tumor growth. The expression of CCL22 protein in ENKTCL tissue of nude mice treated with baicalin decreased compared with control group (P<0.01), while the FOXO3 protein increased (P<0.05). In addition, FOXO3 silencing resulted in the decrease of FOXO3 protein expression and increase of CCL22 protein expression (P<0.01, P<0.001).@*CONCLUSION@#Baicalin can inhibit proliferation and promote apoptosis of ENKTCL cell lines SNK-6 and YTS, up-regulate the expression of Bax protein, down-regulate the expression of BCL-2 protein, and down-regulate the expression of CCL22 protein mediated by FOXO3. Animal experiment shown that the baicalin can inhibit tumor growth. Baicalin can inhibit the growth and induce apoptosis of ENKTCL cells through FOXO3/CCL22 signaling pathway.


Subject(s)
Animals , Mice , Humans , Lymphoma, Extranodal NK-T-Cell/pathology , Forkhead Box Protein O3/metabolism , bcl-2-Associated X Protein/pharmacology , Mice, Nude , Signal Transduction , Apoptosis , Proto-Oncogene Proteins c-bcl-2/metabolism , Chemokine CCL22/pharmacology
3.
Journal of Experimental Hematology ; (6): 1858-1863, 2021.
Article in Chinese | WPRIM | ID: wpr-922213

ABSTRACT

OBJECTIVE@#To investigate the effect of U2AF1 gene mutation to inflammatory cytokine in SKM-1 cell of human myelodysplastic syndromes (MDS), and whether the above effects were mediated by FOXO3a-Bim signaling pathway.@*METHODS@#Wide-type U2AF1 and mutant U2AF1 (the serine residue 34 was replaced by phenylalanine, and named as S34F) recombinant expression plasmids were constructed. Lentiviruses were packaged and transfected into SKM-1 cells. The expression of FOXO3a was up-regulated by lentiviruses, and its transfection rate was investigated. The cell proliferation was detected by CCK-8 method. Flow cytometry was used to detect the apoptosis and cycle of the cells. The expression pro-inflammatory cytokine IL-1β, IL-6, TNF-α and anti-inflammatory cytokine IL-4 were detected by qRT-PCR. FOXO3a, Bim, Bcl-2 and Bax protein expression levels were detected by Western blot.@*RESULTS@#Compared with the control group, the cell apoptosis rate, pro-inflammatory cytokine IL-1β and TNF-α transcription levels were significantly increased in the S34F group (P<0.05); cell cycle was blocked at the G@*CONCLUSION@#U2AF1 S34F mutation can regulate inflammatory phenotype in SKM-1 cells, which may be mediated through FOXO3a-Bim signaling pathway.


Subject(s)
Humans , Cytokines , Forkhead Box Protein O3/metabolism , Mutation , Signal Transduction , Splicing Factor U2AF
4.
Article in Chinese | WPRIM | ID: wpr-1008357

ABSTRACT

To investigate the efficacy of Huangqin Qingre Chubi Capsules(HQC) in patients with ankylosing spondylitis(AS) and its effect on oxidative stress, and to explore its possible mechanism. Fifty-eight cases of AS patients were randomly divided into HQC group and salazosulfapyridine(SASP) group. Another 30 healthy people were employed as a control group. Superoxide dismutase(SOD), total antioxidant capacity(TAOC), malondialdehyde(MDA), lipid peroxidatio(LPO), interleukin-1β(IL-1β), IL-10, IL-4, and tumor necrosis factor-α(TNF-α) were detected by ELISA. The mRNA expression levels of AMP-activated protein kinase(AMPK-α), forkhead box O3a(FOXO3a), manganese superoxide dismutase(MnSOD), and peroxisome proliferator-activated receptor gamma(PPARγ) were detected by Real-time fluorescence quantitative polymerase chain reaction(RT-qPCR). The protein expression levels of AMPK-α, FOXO3a, p-FOXO3a, MnSOD, and PPARγ were detected by Western blot. A questionnaire was used to evaluate the disease activity score and observe the clinical efficacy of HQC in AS patients. The levels of MDA, LPO, TNF-α, and IL-1β were significantly increased in the peripheral blood of AS patients, and SOD, TAOC, IL-4, IL-10 levels were significantly decreased. After HQC treatment, scores of disease active indexes were all decreased, and its clinical efficacy was significantly higher than that in SASP group. After HQC treatment, TAOC, SOD, IL-4, IL-10 were increased and MDA, LPO, TNF-α, IL-1β were decreased; mRNA levels of AMPK-α, FOXO3a, MnSOD, PPARγ and protein levels of AMPK-α, FOXO3a, p-FOXO3a, MnSOD, PPARγ were increased(P<0.01 or P<0.05). HQC can effectively improve the clinical symptoms and oxidative stress of AS patients, and its mechanism may be related to activating PPARγ and up-regulating AMPK/FOXO3a signal pathway.


Subject(s)
Humans , AMP-Activated Protein Kinases/metabolism , Capsules , Drugs, Chinese Herbal/therapeutic use , Forkhead Box Protein O3/metabolism , Oxidative Stress , PPAR gamma/metabolism , Scutellaria baicalensis/chemistry , Signal Transduction , Spondylitis, Ankylosing/drug therapy , Sulfasalazine/therapeutic use
SELECTION OF CITATIONS
SEARCH DETAIL