Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 20 de 50
Filter
1.
Braz. oral res. (Online) ; 34: e014, 2020. tab, graf
Article in English | LILACS | ID: biblio-1089383

ABSTRACT

Abstract Although dental implants and bone regenerative procedures are important approaches for the reestablishment of esthetics and function in young patients with a history of generalized aggressive periodontitis (GAP), no predictable outcomes have been reported, and the host osteo-immunoinflammatory response may play a relevant role in this context. In view of the lack of molecular investigations into the bone tissue condition of young patients with periodontitis, the aim of this study was to evaluate the gene expression of bone-related factors in this population. Bone biopsies were obtained from the posterior mandible in 16 individuals previously diagnosed with GAP and on periodontal support therapy and from 17 periodontally healthy (PH) patients. The gene expression of tumor necrosis factor (TNF)-α, transforming growth factor (TGF)-β, receptor activator of the NF-κB ligand (RANKL), osteoprotegerin (OPG), osteocalcin (OC), bone sialoprotein (BSP), and type I collagen (COL-I), important biomarkers of bone turnover, was evaluated by qRT-PCR. Lower TGF-β and OPG mRNA levels were observed in GAP patients compared to PH individuals (p ≤ 0.05). There were no between-group differences in levels of TNF-α, BSP, RANKL, OC, or COL-I mRNA (p>0.05). In young adults, a history of periodontal disease can negatively modulate the gene expression of important bone-related factors in alveolar bone tissue. These molecular outcomes may contribute to the future development of therapeutic approaches to benefit bone healing in young patients with history of periodontitis via modulation of osteo-immuno-inflammatory biomarkers.


Subject(s)
Humans , Male , Female , Adult , Young Adult , Aggressive Periodontitis/genetics , Gene Expression , Aggressive Periodontitis/metabolism , Reference Values , Biomarkers , Osteocalcin/analysis , Osteocalcin/genetics , Single-Blind Method , Cross-Sectional Studies , Transforming Growth Factor beta/analysis , Transforming Growth Factor beta/genetics , Tumor Necrosis Factor-alpha/analysis , Tumor Necrosis Factor-alpha/genetics , Statistics, Nonparametric , Collagen Type I/analysis , Collagen Type I/genetics , RANK Ligand/analysis , RANK Ligand/genetics , Osteoprotegerin/analysis , Osteoprotegerin/genetics , Integrin-Binding Sialoprotein/analysis , Integrin-Binding Sialoprotein/genetics , Alveolar Process/chemistry , Real-Time Polymerase Chain Reaction
2.
Braz. oral res. (Online) ; 33: e084, 2019. graf
Article in English | LILACS | ID: biblio-1019612

ABSTRACT

Abstract This study aimed to evaluate the role of photobiomodulation (PBM) in apexification and apexogenesis of necrotic rat molars with an open apex. Rat molars were exposed to the oral environment for 3 weeks. Canals were rinsed with 2.5% NaOCl and 17% EDTA, filled with antibiotic paste and sealed. After 7 days, canals were rinsed and divided into six groups (n=6): mineral trioxide aggregate (MTA); blood clot (BC); human dental pulp stem cells (hDPSC); MTA+PBM; BC+PBM; and hDPSC+PBM. In hDPSC groups, a 1% agarose gel scaffold was used. Two groups were not exposed: healthy tooth+PBM (n = 6), healthy tooth (n = 3); and one was exposed throughout the experiment: necrotic tooth (n = 3). In PBM groups, irradiation was performed with aluminum gallium indium phosphide (InGaAlP) diode laser for 30 days within 24-h intervals. After that, the specimens were processed for histological and immunohistochemical analyses. Necrotic tooth showed greater neutrophil infiltrate (p < 0.05). Necrotic tooth, healthy tooth, and healthy tooth+PBM groups showed absence of a thin layer of fibrous condensation in the periapical area. All the other groups stimulated the formation of a thicker layer of fibers (p < 0.05). All groups formed more mineralized tissue than necrotic tooth (p < 0.05). PBM associated with MTA, BC, or hDPSC formed more mineralized tissue (p < 0.05). MTA+PBM induced apexification (p < 0.05). Rabbit polyclonal anti-bone sialoprotein (BSP) antibody confirmed the histological findings of mineralized tissue formation, and hDPSC groups exhibited higher percentage of BSP-positive cells. It can be concluded that PBM improved apexification and favored apexogenesis in necrotic rat molars with an open apex.


Subject(s)
Animals , Tooth Diseases/radiotherapy , Dental Pulp Necrosis/radiotherapy , Tooth Apex/radiation effects , Low-Level Light Therapy/methods , Dental Pulp Cavity/radiation effects , Lasers, Semiconductor/therapeutic use , Apexification/methods , Oxides/therapeutic use , Stem Cells , Tooth Diseases/pathology , Immunohistochemistry , Random Allocation , Reproducibility of Results , Treatment Outcome , Rats, Wistar , Silicates/therapeutic use , Calcium Compounds/therapeutic use , Aluminum Compounds/therapeutic use , Dental Pulp Necrosis/pathology , Tooth Apex/pathology , Dental Pulp/cytology , Dental Pulp Cavity/pathology , Drug Combinations , Integrin-Binding Sialoprotein/analysis
3.
Chinese Journal of Stomatology ; (12): 259-263, 2018.
Article in Chinese | WPRIM | ID: wpr-687077

ABSTRACT

To establish the experimental model of rabbit mandibular anterior implant repair and evaluate the effects of transforming growth factor (TGF)-β3 and dental pulp stem cells (DPSC) in promoting the bone integration of implant. The New Zealand rabbits were randomly divided into experimental group, control group and blank group (6 rabbits for each group) . In the experimental group, the implant area was filled with the mixture of TGF-β3, DPSC and Bio-oss powder. In the control group, the implant area was filled with the mixture of DPSC and Bio-oss powder. In the blank group, the implant area was filled with the mixture of phosphate buffer solution and Bio-oss powder. Eighteen New Zealand rabbits were sacrificed in 2 weeks after procedure. The treated alveolar bone tissue was observed. The bone tissue around the implant were estimated by HE staining, immunocytochemical staining and real-time quantitative PCR. The implants were no shedding nor loose. HE staining shows the blank group had a sparse trabecular bone and a small amount of blood vessel around the implant and no obvious new bone formation. The control group showed that the bone trabecula around the implant was sparse and slender, the osteoblasts were arranged linearly around the trabecular bone, a small amount of new bone formation was found around the implant. In the experimental group, there were more thick and dense trabecular bone around the implant, the surrounding osteoblasts were arranged in clusters. The osteoblasts were active and many new bone formed. Typical bone lacunae, bone cells and a large number of new blood vessels can be observed. Immunohistochemistry showed that the proportion of average positive area in the experimental group, control group, blank group were (24.6±5.3) %, (11.3±2.8) % and (7.6±3.8) % respectively. The expression of bone sialoprotein in experimental group were significantly higher than the other 2 groups(0.000). Real-time quantitative PCR results showed that the expression level of Runt-related transcription factor 2 (RUNX2), type Ⅰcollagen (COL-Ⅰ), alkaline phosphatase in the experimental group was higher than in the blank group. The expression level of RUNX2 and COL-Ⅰ in the experimental group was higher than that of the control group (0.023). TGF-β3 has potential to promote the transformation of DPSC into osteoblasts, which can promote the integration of bone around the implant.


Subject(s)
Animals , Rabbits , Bone Substitutes , Therapeutic Uses , Core Binding Factor Alpha 1 Subunit , Dental Implantation, Endosseous , Dental Pulp , Cell Biology , Integrin-Binding Sialoprotein , Metabolism , Mandible , Minerals , Therapeutic Uses , Osseointegration , Osteoblasts , Cell Biology , Random Allocation , Stem Cell Transplantation , Transforming Growth Factor beta , Transforming Growth Factor beta3 , Therapeutic Uses
4.
Article in English | WPRIM | ID: wpr-772300

ABSTRACT

Amelogenin (AMG) is a cell adhesion molecule that has an important role in the mineralization of enamel and regulates events during dental development and root formation. The purpose of the present study was to investigate the effects of recombinant human AMG (rhAMG) on mineralized tissue-associated genes in cementoblasts. Immortalized mouse cementoblasts (OCCM-30) were treated with different concentrations (0.1, 1, 10, 100, 1000, 10,000, 100,000 ng · mL) of recombinant human AMG (rhAMG) and analyzed for proliferation, mineralization and mRNA expression of bone sialoprotein (BSP), osteocalcin (OCN), collagen type I (COL I), osteopontin (OPN), runt-related transcription factor 2 (Runx2), cementum attachment protein (CAP), and alkaline phosphatase (ALP) genes using quantitative RT-PCR. The dose response of rhAMG was evaluated using a real-time cell analyzer. Total RNA was isolated on day 3, and cell mineralization was assessed using von Kossa staining on day 8. COL I, OPN and lysosomal-associated membrane protein-1 (LAMP-1), which is a cell surface binding site for amelogenin, were evaluated using immunocytochemistry. F-actin bundles were imaged using confocal microscopy. rhAMG at a concentration of 100,000 ng · mL increased cell proliferation after 72 h compared to the other concentrations and the untreated control group. rhAMG (100,000 ng · mL) upregulated BSP and OCN mRNA expression levels eightfold and fivefold, respectively. rhAMG at a concentration of 100,000 ng · mL remarkably enhanced LAMP-1 staining in cementoblasts. Increased numbers of mineralized nodules were observed at concentrations of 10,000 and 100,000 ng · mL rhAMG. The present data suggest that rhAMG is a potent regulator of gene expression in cementoblasts and support the potential application of rhAMG in therapies aimed at fast regeneration of damaged periodontal tissue.


Subject(s)
Animals , Mice , Alkaline Phosphatase , Metabolism , Amelogenin , Physiology , Biomarkers , Metabolism , Calcification, Physiologic , Cell Adhesion Molecules , Metabolism , Cell Proliferation , Cementogenesis , Physiology , Collagen Type I , Metabolism , Core Binding Factor Alpha 1 Subunit , Metabolism , Gene Expression Regulation , In Vitro Techniques , Integrin-Binding Sialoprotein , Metabolism , Microscopy, Confocal , Osteocalcin , Metabolism , Osteopontin , Metabolism , Real-Time Polymerase Chain Reaction
5.
Braz. dent. j ; 28(3): 307-316, May-June 2017. tab, graf
Article in English | LILACS | ID: biblio-888646

ABSTRACT

Abstract This study aimed to investigate the influence of a three-dimensional cell culture model and bioactive glass (BG) particles on the expression of osteoblastic phenotypes in rat calvaria osteogenic cells culture. Cells were seeded on two-dimensional (2D) and three-dimensional (3D) collagen with BG particles for up to 14 days. Cell viability and alkaline phosphatase (ALP) activity was performed. Cell morphology and immunolabeling of noncollagenous bone matrix proteins were assessed by epifluorescence and confocal microscopy. The expressions of osteogenic markers were analyzed using RT-PCR. Mineralized bone-like nodule formation was visualized by microscopy and calcium content was assessed quantitatively by alizarin red assay. Experimental cultures produced a growing cell viability rate up to 14 days. Although ALP activity at 7 days was higher on BG cultures, cells on 3D and 3D+BG had an activity decrease of ALP at 14 days. Three-dimensional conditions favored the immunolabeling for OPN and BSP and the expression of ALP and COL I mRNAs. BG particles influenced positively the OC and OPN mRNAs expression and calcified nodule formation in vitro. The results indicated that the 3D cultures and BG particles contribute to the expression of osteoblastic phenotype and to differentiated and mineralized matrix formation.


Resumo O objetivo deste estudo foi investigar a influência do modelo de cultura celular tridimensional e das partículas de vidro bioativo (BG) sobre a expressão fenotípica de culturas de células osteogênicas da calvária de ratos. As células foram mantidas em culturas sobre superfícies colágenas bi-dimensionais (2D) e em géis de colágeno tridimensional (3D) com e sem partículas de BG até 14 dias. Foram avaliadas: viabilidade celular, atividade de fosfatase alcalina (ALP), morfologia celular e imunomarcação de proteínas da matriz não-colágena do osso através de epifluorescência e microscopia confocal. As expressões de marcadores osteogênicos foram analisadas utilizando RT-PCR. A formação de nódulos mineralizados foi visualizada através de microscopia e o conteúdo de cálcio foi avaliado quantitativamente pelo Alizarina Red. As culturas experimentais produziram uma taxa crescente de viabilidade até 14 dias. Embora a atividade ALP em 7 dias tenha sido maior em culturas com BG, as células em 3D e 3D+BG apresentaram uma diminuição da atividade ALP aos 14 dias. As condições tridimensionais favoreceram a imunomarcação para OPN e BSP e a expressão de mRNAs para ALP e COL I. As partículas de BG influenciaram positivamente a expressão do mRNAs para OPN e OC e a formação de nódulos calcificados in vitro. Os resultados indicaram que as culturas em 3D e partículas BG contribuíram para a expressão do fenótipo osteoblástico e para a diferenciação e formação de matriz mineralizada.


Subject(s)
Animals , Biocompatible Materials , Glass , Osteoblasts/cytology , Osteogenesis , Skull/cytology , Alkaline Phosphatase/genetics , Alkaline Phosphatase/metabolism , Biomarkers/metabolism , Calcium/metabolism , Cell Culture Techniques , Cell Survival , Collagen Type I/genetics , Collagen Type I/metabolism , Fluorescent Antibody Technique, Indirect , Gene Expression Profiling , Integrin-Binding Sialoprotein/metabolism , Microscopy, Confocal , Microscopy, Fluorescence , Osteoblasts/enzymology , Osteoblasts/metabolism , Osteopontin/metabolism , Rats, Wistar , Real-Time Polymerase Chain Reaction , RNA, Messenger/genetics , Skull/enzymology , Skull/metabolism , Tissue Scaffolds
6.
J. appl. oral sci ; 22(6): 541-553, Nov-Dec/2014. graf
Article in English | LILACS, BBO | ID: lil-732593

ABSTRACT

Objective The aim of this paper was to evaluate the repair of onlay autogenous bone grafts covered or not covered by an expanded polytetrafluoroethylene (e-PTFE) membrane using immunohistochemistry in rats with induced estrogen deficiency. Material and Methods Eighty female rats were randomly divided into two groups: ovariectomized (OVX) and with a simulation of the surgical procedure (SHAM). Each of these groups was again divided into groups with either placement of an autogenous bone graft alone (BG) or an autogenous bone graft associated with an e-PTFE membrane (BGM). Animals were euthanized on days 0, 7, 21, 45, and 60. The specimens were subjected to immunohistochemistry for bone sialoprotein (BSP), osteonectin (ONC), and osteocalcin (OCC). Results All groups (OVX+BG, OVX+BMG, SHAM+BG, and SHAM+BMG) showed greater bone formation, observed between 7 and 21 days, when BSP and ONC staining were more intense. At the 45-day, the bone graft showed direct bonding to the recipient bed in all specimens. The ONC and OCC showed more expressed in granulation tissue, in the membrane groups, independently of estrogen deficiency. Conclusions The expression of bone forming markers was not negatively influenced by estrogen deficiency. However, the markers could be influenced by the presence of the e-PTFE membrane. .


Subject(s)
Animals , Female , Bone Regeneration/physiology , Bone Transplantation/methods , Guided Tissue Regeneration/methods , Polytetrafluoroethylene/therapeutic use , Biomarkers/analysis , Estrogens/deficiency , Immunohistochemistry , Integrin-Binding Sialoprotein/analysis , Mandible/surgery , Osteoblasts/physiology , Osteocalcin/analysis , Osteonectin/analysis , Osteoporosis/physiopathology , Ovariectomy , Random Allocation , Rats, Wistar , Reproducibility of Results , Time Factors , Treatment Outcome
7.
Article in English | WPRIM | ID: wpr-94654

ABSTRACT

OBJECTIVES: The effects of bone morphogenetic protein-2 (BMP-2) and enamel matrix derivative (EMD) respectively with mineral trioxide aggregate (MTA) on hard tissue regeneration have been investigated in previous studies. This study aimed to compare the osteogenic effects of MTA/BMP-2 and MTA/EMD treatment in MC3T3-E1 cells. MATERIALS AND METHODS: MC3T3-E1 cells were treated with MTA (ProRoot, Dentsply), BMP-2 (R&D Systems), EMD (Emdogain, Straumann) separately and MTA/BMP-2 or MTA/EMD combination. Mineralization was evaluated by staining the calcium deposits with alkaline phosphatase (ALP, Sigma-Aldrich) and Alizarin red (Sigma-Aldrich). The effects on the osteoblast differentiation were evaluated by the expressions of osteogenic markers, including ALP, bone sialoprotein (BSP), osteocalcin (OCN), osteopontin (OPN) and osteonectin (OSN), as determined by reverse-transcription polymerase chain reaction analysis (RT-PCR, AccuPower PCR, Bioneer). RESULTS: Mineralization increased in the BMP-2 and MTA/BMP-2 groups and increased to a lesser extent in the MTA/EMD group but appeared to decrease in the MTA-only group based on Alizarin red staining. ALP expression largely decreased in the EMD and MTA/EMD groups based on ALP staining. In the MTA/BMP-2 group, mRNA expression of OPN on day 3 and BSP and OCN on day 7 significantly increased. In the MTA/EMD group, OSN and OCN gene expression significantly increased on day 7, whereas ALP expression decreased on days 3 and 7 (p < 0.05). CONCLUSIONS: These results suggest the MTA/BMP-2 combination promoted more rapid differentiation in MC3T3-E1 cells than did MTA/EMD during the early mineralization period.


Subject(s)
Alkaline Phosphatase , Calcium , Dental Enamel , Gene Expression , Integrin-Binding Sialoprotein , Osteoblasts , Osteocalcin , Osteonectin , Osteopontin , Polymerase Chain Reaction , Regeneration , RNA, Messenger , Pemetrexed
8.
Article in English | WPRIM | ID: wpr-99021

ABSTRACT

PURPOSE: The purpose of this study was to assess the surface characteristics and the biocompatibility of zirconium (Zr) coating on Ti-6Al-4V alloy surface by radio frequency (RF) magnetron sputtering method. MATERIALS AND METHODS: The zirconium films were developed on Ti-6Al-4V discs using RF magnetron sputtering method. Surface profile, surface composition, surface roughness and surface energy were evaluated. Electrochemical test was performed to evaluate the corrosion behavior. Cell proliferation, alkaline phosphatase (ALP) activity and gene expression of mineralized matrix markers were measured. RESULTS: SEM and EDS analysis showed that zirconium deposition was performed successfully on Ti-6Al-4V alloy substrate. Ti-6Al-4V group and Zr-coating group showed no significant difference in surface roughness (P>.05). Surface energy was significantly higher in Zr-coating group than in Ti-6Al-4V group (P<.05). No difference in cell morphology was observed between Ti-6Al-4V group and Zr-coating group. Cell proliferation was higher in Zr-coating group than Ti-6Al-4V group at 1, 3 and 5 days (P<.05). Zr-coating group showed higher ALP activity level than Ti-6Al-4V group (P<.05). The mRNA expressions of bone sialoprotein (BSP) and osteocalcin (OCN) on Zr-coating group increased approximately 1.2-fold and 2.1-fold respectively, compared to that of Ti-6Al-4V group. CONCLUSION: These results suggest that zirconium coating on Ti-6Al-4V alloy could enhance the early osteoblast responses. This property could make non-toxic metal coatings on Ti-6Al-4V alloy suitable for orthopedic and dental implants.


Subject(s)
Alkaline Phosphatase , Alloys , Biocompatible Materials , Cell Proliferation , Coated Materials, Biocompatible , Corrosion , Dental Implants , Gene Expression , Integrin-Binding Sialoprotein , Orthopedics , Osteoblasts , Osteocalcin , RNA, Messenger , Surface Properties , Titanium , Zirconium
9.
Chinese Journal of Oncology ; (12): 602-605, 2014.
Article in Chinese | WPRIM | ID: wpr-272327

ABSTRACT

<p><b>OBJECTIVE</b>To investigate the roll of bone sialoprotein (BSP), a secreted glycoprotein, found in mineralized tissues in the development and progression of human esophageal squamous cell carcimoma (ESCC), and explore its association with clinicopathological characteristics and five-year survival of the patients.</p><p><b>METHODS</b>The expression of BSP was determined in 211 primary ESCC tumors and their paired nontumorous tissues using tissue-array, RT-PCR and immunohistochemistry.</p><p><b>RESULTS</b>Primary ESCC tissues showed a significantly higher expression rate of BSP mRNA than their paired nontumorous tissues (93.8% vs. 16.6%, P < 0.001), the same with BSP protein (56.9% vs. 31.3%, P < 0.001). The expression rate of BSP protein was correlated to lymph node metastasis and TNM stage (P < 0.05). The 5-year survival rate of BSP protein-positive ESCC patients was significantly lower than that of BSP protein-negative ESCC patients (P < 0.05). Multivariate analysis showed that tumor differentiation, TNM staging and BSP protein expression were independent factors affecting the prognosis of ESCC patients (P < 0.05).</p><p><b>CONCLUSIONS</b>The abnormal expression of BSP may play a significant role in the malignant progression and prognosis of ESCC, and BSP might be a marker reflecting the biologial behavior of ESCC.</p>


Subject(s)
Humans , Blotting, Western , Carcinoma, Squamous Cell , Diagnosis , Metabolism , Esophageal Neoplasms , Diagnosis , Metabolism , Immunohistochemistry , Integrin-Binding Sialoprotein , Genetics , Metabolism , Lymphatic Metastasis , Neoplasm Staging , Prognosis , RNA, Messenger , Survival Rate
10.
Article in English | WPRIM | ID: wpr-162993

ABSTRACT

PURPOSE: This study focused on in vitro cell differentiation and surface characteristics in a magnesium coated titanium surface implanted on using a plasma ion source. MATERIALS AND METHODS: 40 commercially made pure titanium discs were prepared to produce Ti oxide machined surface (M) and Mg-incorporated Ti oxide machined surface (MM). Surface properties were analyzed using a scanning electron microscopy (SEM). On each surface, alkaline phosphatase (ALP) activity, alizarin red S staining for mineralization of MC3T3-E1 cells, and quantitative analysis of osteoblastic gene expression, were evaluated. Actin ring formation assay and gene expression analysis of TRAP and GAPDH performing RT-PCR were performed to characterize osteoclast differentiation on mouse bone marrow-derived macrophages (BMMs). RESULTS: MM showed similar surface morphology and surface roughness with M, but was slightly smoother after ion implantation at the micron scale. M was more hydrophobic than MM. No significant difference between surfaces on ALP activity at 7 and 14 days were observed. Real-time PCR analyses showed similar levels of mRNA expression of the osteoblast phenotype genes; osteopontin (OPN), osteocalcin (OCN), bone sialoprotein (BSP), and collagen 1 (Col 1) in cell grown on MM at 7, 14 and 21 days. Alizarin red S staining at 21 days showed no significant difference. BMMs differentiation increased in M and MM. Actin ring formation assay and gene expression analysis of TRAP showed osteoclast differentiation to be more active on MM. CONCLUSION: Both M and MM have a good effect on osteoblastic cell differentiation, but MM may speed the bone remodeling process by activating on osteoclast differentiation.


Subject(s)
Animals , Mice , Actins , Alkaline Phosphatase , Bone Remodeling , Cell Differentiation , Collagen , Gene Expression , Integrin-Binding Sialoprotein , Macrophages , Magnesium , Microscopy, Electron, Scanning , Osteoblasts , Osteocalcin , Osteoclasts , Osteopontin , Phenotype , Plasma , Real-Time Polymerase Chain Reaction , RNA, Messenger , Surface Properties , Titanium
11.
Article in Chinese | WPRIM | ID: wpr-336359

ABSTRACT

<p><b>OBJECTIVE</b>To investigate the effects of Osterix (Osx) overexpression on the osteogenic differentiation of human periodontal ligament cells in response to mechanical force.</p><p><b>METHODS</b>Human periodontal ligament cells were isolated and cultured in vitro with explant method. Cells were transfected with either an Osx expression vector pcDNA3.1 flag-Osx or the mock control vector pcDNA3.1 flag. Then, cells were centrifuged for 6 h. After transfection and centrification, the expression of Osx mRNA and protein in untransfected cells, mock-transfected cells and Osx-transfected cells were measured by reverse transcription-polymerase chain reaction (RT-PCR) and Western blot respectively. Furthermore, the changes of mRNA expressions of core-binding factor cal (Cbfal), alkaline phosphatase (ALP), osteopontin (OPN), osteocalcin (OC), bone sialoprotein(BSP) and collagen protein al (Col I ) genes were measured to assess the differentiation of human periodontal ligament cells.</p><p><b>RESULTS</b>At 24 h after transfection, Osx mRNA and protein level increased significantly in Osx-transfected cells (P < 0.01), while there were no significant difference in Osx mRNA and protein levels between mock-transfected cells and untransfected cells(P > 0.05). Simultaneously, the upregulated mRNA expressions of all the five osteogenic genes were observed (P < 0.05, P < 0.01). After 6 h of mechanical stimulation, a significant increase in Osx expression was shown in all three groups. However, compared to mock-transfected and untransfected cells, Osx-transfected cells further showed the highest Osx mRNA and protein expression level. Furthermore, the mRNA expressions of all five osteogenic markers in Osx-transfected cells also exhibited the greater increase and showed the highest levels.</p><p><b>CONCLUSION</b>The overexpression of Osx promotes the mechanical stress-induced osteogenic differentiation of human periodontal ligament cells. Osx may be essential for mechanical stress-induced differentiation of human periodontal ligament cells to osteoblas tic-like cells and be involved in orthodontic osteogenic remodeling.</p>


Subject(s)
Humans , Alkaline Phosphatase , Cell Differentiation , Cells, Cultured , Integrin-Binding Sialoprotein , Osteocalcin , Osteogenesis , Osteopontin , Periodontal Ligament , RNA, Messenger , Stress, Mechanical , Transfection
12.
Chinese Journal of Stomatology ; (12): 398-402, 2013.
Article in Chinese | WPRIM | ID: wpr-293567

ABSTRACT

<p><b>OBJECTIVE</b>To investigate the effects of sonicated extracts of Porphyromonas gingivalis (Pg) on osteogenic differentiation of mouse osteoblast cell line MC3T3-E1.</p><p><b>METHODS</b>PgW83 was cultured under standard anaerobic conditions and extracted by sonication. Mouse osteoblast cell line MC3T3-E1 was cultured with various concentrations of the extraction (0, 10, 100, 1000 mg/L). Western blotting was applied to investigate the expression of osteocalcin (OC), bone sialoprotein (BSP), osteopontin (OPN) and osteonectin (ON). The activity of alkaline phosphatase (ALP) was detected by microplate reader after 14 days. Mineralization nodule formation was measured by alizarin red staining after 21 days.</p><p><b>RESULTS</b>Compared with the control group, the extracts of Pg decreased OC and ON expression in a dose-dependent manner (OC relative expression:1.000 ± 0.000,0.852 ± 0.110,0.625 ± 0.451,0.213 ± 0.053), (ON relative expression: 1.000 ± 0.000, 1.035 ± 0.133,0.141 ± 0.023,0.020 ± 0.003) (P < 0.05). The expression of OPN was down-regulated significantly in MC3T3-E1 treated with 1000 mg/L extraction (0.572 ± 0.162) compared with control group, 10 and 100 mg/L (1.000 ± 0.000, 1.029 ± 0.135, 1.199 ± 0.337) (P < 0.05). The expression of BSP remained unchanged when the cells were cultured with or without extraction (BSP relative expression:1.000 ± 0.000,0.831 ± 0.182,0.897 ± 0.115,0.778 ± 0.235) (P > 0.05). Meanwhile, the extracts of Pg decreased ALP activity [control group:(0.0275 ± 0.0014) U/gprot, 10 mg/L: (0.0140 ± 0.0011) U/gprot, 100 mg/L: (0.0057 ± 0.0013) U/gprot, 1000 mg/L: (0.0020 ± 0.0008) U/gprot] (P < 0.05) and reduced mineralization nodule formation.</p><p><b>CONCLUSIONS</b>The results suggest that Pg may inhibit osteoblasts'osteogenic function by down-regulation of osteogenic differentiation related proteins.</p>


Subject(s)
Animals , Mice , Alkaline Phosphatase , Metabolism , Calcification, Physiologic , Cell Differentiation , Cell Line , Integrin-Binding Sialoprotein , Metabolism , Osteoblasts , Cell Biology , Metabolism , Osteocalcin , Metabolism , Osteogenesis , Osteonectin , Metabolism , Osteopontin , Metabolism , Porphyromonas gingivalis , Metabolism , Virulence
13.
Chinese Journal of Stomatology ; (12): 535-538, 2013.
Article in Chinese | WPRIM | ID: wpr-293551

ABSTRACT

<p><b>OBJECTIVE</b>To analyze the effects of emdogain(EMD) on the expression of the bone sialoprotein(BSP) gene in human dental pulp cells and to elucidate the molecular mechanism of BSP gene regulated by EMD.</p><p><b>METHODS</b>Human dental pulp was harvested from premolars freshly extracted for orthodontic purpose and cultured. Cells were divided into different concentrations (25, 50, 100 and 250 mg/L) of EMD and control groups (Dulbecco's modified Eagle's medium). Total RNA of cells was extracted. Human BSP mRNA levels was detected with the real-time PCR. Regulations of EMD on human BSP protein levels were detected with Western blotting.</p><p><b>RESULTS</b>In the real-time PCR, at the same time point, there were significant differences on BSP mRNA levels between 25, 50, 100 and 250 mg/L EMD groups (7 d:1.79 ± 0.03, 2.03 ± 0.10, 2.67 ± 0.08, 2.94 ± 0.07) and control group (7 d:1.06 ± 0.11) (P < 0.001); at the different time point (1, 3, 5 and 7 d), the same dose(250 mg/L) of EMD stimulated human dental pulp cells, BSP mRNA (2.30 ± 0.06, 2.65 ± 0.05, 2.76 ± 0.05, 2.94 ± 0.07) was increased (P < 0.05). Treatment of human dental pulp cells with EMD (250 mg/L) increased the protein levels.</p><p><b>CONCLUSIONS</b>EMD increases BSP mRNA and protein levels in human dental pulp cells.</p>


Subject(s)
Humans , Bicuspid , Cells, Cultured , Dental Enamel Proteins , Pharmacology , Dental Pulp , Cell Biology , Metabolism , Gene Expression Regulation , Integrin-Binding Sialoprotein , Genetics , Metabolism , RNA, Messenger , Metabolism
14.
Article in English | WPRIM | ID: wpr-227907

ABSTRACT

PURPOSE: The aim of this study was to evaluate the surface properties and in vitro bioactivity to osteoblasts of magnesium and magnesium-hydroxyapatite coated titanium. MATERIALS AND METHODS: Themagnesium (Mg) and magnesium-hydroxyapatite (Mg-HA) coatings on titanium (Ti) substrates were prepared by radio frequency (RF) and direct current (DC) magnetron sputtering.The samples were divided into non-coated smooth Ti (Ti-S group), Mg coatinggroup (Ti-Mg group), and Mg-HA coating group (Ti-MgHA group).The surface properties were evaluated using scanning electron microscopy (SEM) and X-ray photoelectron spectroscopy (XPS). The surface roughness was evaluated by atomic force microscopy (AFM). Cell adhesion, cell proliferation and alkaline phosphatase (ALP) activity were evaluated using MC3T3-E1 cells. Reverse transcription polymerase chain reaction (RT-PCR) analysis was performed. RESULTS: Cross-sectional SEM images showed that Mg and Mg-HA depositionson titanium substrates were performed successfully. The surface roughness appeared to be similaramong the three groups. Ti-MgHA and Ti-Mg group had improved cellular responses with regard to the proliferation, alkaline phosphatase (ALP) activity, and bone-associated markers, such as bone sialoprotein (BSP) and osteocalcin (OCN) mRNA compared to those of Ti-S group. However, the differences between Ti-Mg group and Ti-MgHA group were not significant, in spite of the tendency of higher proliferation, ALP activity and BSP expression in Ti-MgHA group. CONCLUSION: Mg and Mg-HAcoatings could stimulate the differentiation into osteoblastic MC3T3-E1 cells, potentially contributing to rapid osseointegration.


Subject(s)
Alkaline Phosphatase , Biocompatible Materials , Calcium Phosphates , Calcium , Cell Adhesion , Cell Proliferation , Coated Materials, Biocompatible , Integrin-Binding Sialoprotein , Magnesium , Microscopy, Atomic Force , Microscopy, Electron, Scanning , Osseointegration , Osteoblasts , Osteocalcin , Photoelectron Spectroscopy , Polymerase Chain Reaction , Reverse Transcription , RNA, Messenger , Surface Properties , Titanium
15.
Article in Chinese | WPRIM | ID: wpr-232763

ABSTRACT

<p><b>OBJECTIVE</b>To regenerate dentin-pulp complex by tissue engineering with human stem cells from apical papilla cells (SCAP) as the seed cells.</p><p><b>METHODS</b>SCAP was separated from from normal human impacted third molars with immature roots by outgrowth culture. The cells were then cultured in the differentiation medium for 3 weeks or in normal medium for 60 days, and analyzed for mineralization potential by Alizarin red staining. The osteo/odontogenic markers including alkaline phosphatase (ALP), bone sialoprotein (BSP), osteocalcin (OC) and dentin sialoprotein (DSP) were investigated by immunofluorescence staining and reverse transcription-polymerase chain reaction. The co-cultured mixture of SCAP and HA/TCP, or HA/TCP alone was implanted subcutaneously on the back of nude mice for 8 weeks, and the implants were collected and examined by HE and immunohistochemical staining.</p><p><b>RESULTS</b>Round alizarin red-positive nodules formed in the isolated cells after cell culture in the differentiation medium for 3 weeks or in normal medium for 60 days with positive staining for osteo/odontogenic markers. SCAP with HA/TCP could regenerate pulp-dentin complex-like tissue in nude mice. The cells near the dentin-like tissue were positive for DSP. No mineral tissue was found in mice receiving HA/TCP implantation.</p><p><b>CONCLUSIONS</b>SCAP may serve as a promising seed cell for dentin-pulp complex tissue engineering.</p>


Subject(s)
Adolescent , Adult , Animals , Female , Humans , Mice , Young Adult , Alkaline Phosphatase , Cell Culture Techniques , Cell Differentiation , Coculture Techniques , Dental Papilla , Cell Biology , Dental Pulp , Cell Biology , Extracellular Matrix Proteins , Integrin-Binding Sialoprotein , Mice, Nude , Odontogenesis , Physiology , Osteocalcin , Phosphoproteins , Sialoglycoproteins , Stem Cells , Chemistry , Physiology , Tissue Engineering , Methods
16.
Article in English | WPRIM | ID: wpr-27783

ABSTRACT

OBJECTIVE: To investigate the effects of the hypoxia inducible factor-1 (HIF-1) activation-mimicking agent cobalt chloride (CoCl2) on the osteogenic differentiation of human mesenchymal stem cells (hMSCs) and elucidate the underlying molecular mechanisms. STUDY DESIGN: The dose and exposure periods for CoCl2 in hMSCs were optimized by cell viability assays. After confirmation of CoCl2-induced HIF-1alpha and vascular endothelial growth factor expression in these cells by RT-PCR, the effects of temporary preconditioning with CoCl2 on hMSC osteogenic differentiation were evaluated by RT-PCR analysis of osteogenic gene expression, an alkaline phosphatase (ALP) activity assay and by alizarin red S staining. RESULTS: Variable CoCl2 dosages (up to 500 microM) and exposure times (up to 7 days) on hMSC had little effect on hMSC survival. After CoCl2 treatment of hMSCs at 100 microM for 24 or 48 hours, followed by culture in osteogenic differentiating media, several osteogenic markers such as Runx-2, osteocalcin and osteopontin, bone sialoprotein mRNA expression level were found to be up-regulated. Moreover, ALP activity was increased in these treated cells in which an accelerated osteogenic capacity was also verified by alizarin red S staining. CONCLUSIONS: The osteogenic differentiation potential of hMSCs could be preserved and even enhanced by CoCl2 treatment.


Subject(s)
Humans , Alkaline Phosphatase , Hypoxia , Anthraquinones , Cell Survival , Cobalt , Durapatite , Gene Expression , Integrin-Binding Sialoprotein , Mesenchymal Stem Cells , Osteocalcin , Osteopontin , RNA, Messenger , Vascular Endothelial Growth Factor A
18.
Chinese Journal of Stomatology ; (12): 552-556, 2012.
Article in Chinese | WPRIM | ID: wpr-260237

ABSTRACT

<p><b>OBJECTIVE</b>To analyze the effects of calcium hydroxide [Ca(OH)2] on transcription of the bone sialoprotein (BSP) gene in human dental pulp cells.</p><p><b>METHODS</b>Human dental pulp tissues were collected from extracted teeth for orthodontic reason. In cell culture media, different dose (0.012, 0.120, 0.400 and 1.200 mmol/L) of Ca(OH)2 was added. Total RNA of cells were extracted. The best dose of Ca(OH)2 on human BSP was determined with the real-time polymerase chain reaction (PCR). Further, the time (0, 3, 6, 12, 24 h) effects of the best dose Ca(OH)2 on human BSP, runt-related transcription factor-2 (Runx-2) and osterix (OSX) mRNA levels were determined with PCR. Further method included transient transfection assays, linking chimeric constructs of the human BSP gene promoter to a luciferase reporter gene, then ransfected using lipofectamine in cells and measured the luciferase activities of BSP gene promoter.</p><p><b>RESULTS</b>With the real-time PCR, the optimal Ca(OH)2 concentration was determined as 1.200 mmol/L. With this concentration at different time points (0, 3, 6, 12 and 24 h), the levels of BSP mRNA increased at 6 h (1.45 ± 0.36), reached maximal at 12 h (2.66 ± 0.18); the levels of Runx-2mRNA increased at 6 h (2.38 ± 0.08), at 12 h (2.73 ± 0.16), and decreased at 24 h. OSX mRNA could be recognized at 12 h, reached maximal levels at 24 h (3.30 ± 0.062). Transient transfection assays showed that treatment of human dental pulp cells with Ca(OH)2 (1.200 mmol/L) increased the luciferase activities of the constructs between -84LUC and -868LUC at 12 h (2.00 ~ 2.60 fold).</p><p><b>CONCLUSIONS</b>This study demonstrate that Ca(OH)2 could stimulate BSP transcription between -84LUC and -868LUC in the human BSP gene promoter in human dental pulp cells.</p>


Subject(s)
Humans , Calcium Hydroxide , Pharmacology , Cells, Cultured , Core Binding Factor Alpha 1 Subunit , Genetics , Metabolism , Dental Pulp , Cell Biology , Metabolism , Integrin-Binding Sialoprotein , Genetics , Metabolism , Luciferases , Metabolism , Promoter Regions, Genetic , RNA, Messenger , Metabolism , Sp7 Transcription Factor , Transcription Factors , Genetics , Metabolism , Transcription, Genetic , Transfection
19.
Chinese Journal of Stomatology ; (12): 364-368, 2012.
Article in Chinese | WPRIM | ID: wpr-281581

ABSTRACT

<p><b>OBJECTIVE</b>To find an ideal method inducing dental pulp stem cells (DPSC) osteogenic differentiation. To compare the effect of co-culture method and that of mineralizing culture medium.</p><p><b>METHODS</b>DPSC were co-cultured with osteoblasts using cell culture inserts system as experiment group, and DPSC were cultured in mineralizing culture medium as control group. The cell morphology and ultrastructure and mineralized nodes were analyzed under phase contrast microscope, transmission electron microscope, and alizarin red S staning. Bone sialoprotein (BSP), Runx-2, osteocalcin, and collagen-1 (Col-1) osteoblastic genes expressions of DPSC cultivated in special niche of osteoblasts were assayed by reverse transcription polymerase chain reaction (RT-PCR).</p><p><b>RESULTS</b>The mineralization nudoles of experiment group were more than control group. Fifteen days later, BSP and Col-1 genes in the DPSC of co-cultures were 9.807 ± 1.135 and 2.913 ± 0.310, respectively. And those in the DPSC of mineralizing culture medium were 6.478 ± 0.781 and 1.703 ± 0.184, respectively. Co-cultures and mineralizing were significantly different (P < 0.05).</p><p><b>CONCLUSIONS</b>As osteoblasts can secret lots of osteogenic cell cytokines, they have more significant effect than mineralizing culture medium on osteogenesis of DPSC.</p>


Subject(s)
Humans , Cell Differentiation , Coculture Techniques , Collagen Type I , Metabolism , Core Binding Factor Alpha 1 Subunit , Metabolism , Dental Pulp , Cell Biology , Gene Expression Regulation, Developmental , Integrin-Binding Sialoprotein , Metabolism , Microscopy, Electron, Transmission , Microscopy, Phase-Contrast , Osteoblasts , Cell Biology , Osteocalcin , Metabolism , Osteogenesis , Reverse Transcriptase Polymerase Chain Reaction , Stem Cells , Cell Biology , Metabolism
20.
Article in English | WPRIM | ID: wpr-68968

ABSTRACT

PURPOSE: The purpose of this study was to determine whether increasing the Ti6Al4V surface oxide negative charge through heat (600degrees C) or radiofrequency plasma glow discharge (RFGD) pretreatment, with or without a subsequent coating with fibronectin, stimulated osteoblast gene marker expression in the MC3T3 osteoprogenitor cell line. METHODS: Quantitative real-time polymerase chain reaction was used to measure changes over time in the mRNA levels for osteoblast gene markers, including alkaline phosphatase, bone sialoprotein, collagen type I (alpha1), osteocalcin, osteopontin and parathyroid hormone-related peptide (PTH-rP), and the osteoblast precursor genes Runx2 and osterix. RESULTS: Osteoprogenitors began to differentiate earlier on disks that were pretreated with heat or RFGD. The pretreatments increased gene marker expression in the absence of a fibronectin coating. However, pretreatments increased osteoblast gene expression for fibronectin-coated disks more than uncoated disks, suggesting a surface oxide-mediated specific enhancement of fibronectin's bioactivity. Heat pretreatment had greater effects on the mRNA expression of genes for PTH-rP, alkaline phosphatase and osteocalcin while RFGD pretreatment had greater effects on osteopontin and bone sialoprotein gene expression. CONCLUSIONS: The results suggest that heat and RFGD pretreatments of the Ti6Al4V surface oxide stimulated osteoblast differentiation through an enhancement of (a) coated fibronectin's bioactivity and (b) the bioactivities of other serum or matrix proteins. The quantitative differences in the effects of the two pretreatments on osteoblast gene marker expression may have arisen from the unique physico-chemical characteristics of each resultant oxide surface. Therefore, engineering the Ti6Al4V surface oxide to become more negatively charged can be used to accelerate osteoblast differentiation through fibronectin-dependent and independent mechanisms.


Subject(s)
Alkaline Phosphatase , Alloys , Cell Differentiation , Cell Line , Collagen Type I , Dental Implants , Fees and Charges , Fibronectins , Gene Expression , Hot Temperature , Integrin alpha5beta1 , Integrin-Binding Sialoprotein , Osteoblasts , Osteocalcin , Osteopontin , Parathyroid Hormone-Related Protein , Plasma , Proteins , Real-Time Polymerase Chain Reaction , RNA, Messenger , Titanium
SELECTION OF CITATIONS
SEARCH DETAIL