Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 9 de 9
Filter
1.
Clinics ; Clinics;76: e2175, 2021. tab, graf
Article in English | LILACS | ID: biblio-1249578

ABSTRACT

OBJECTIVE: The long non-coding RNA (lncRNA) KCNQ1 overlapping transcript 1 (KCNQ1OT1) exerts vital regulatory functions in diverse tumors. However, the biological function of KCNQ1OT1 in esophageal squamous cell carcinoma (ESCC) remains unclear. METHODS: KCNQ1OT1 expression was detected in ESCC tissues using quantitative real-time polymerase chain reaction (qRT-PCR). Cell proliferation, apoptosis, migration, and invasion were detected by the CCK-8 assay, EdU assay, flow cytometry analysis, and Transwell experiments, respectively. Bioinformatics analysis, luciferase reporter experiments, and RNA immunoprecipitation assays were used to predict and validate the regulatory relationships between KCNQ1OT1, microRNA-133b (miR-133b) and epidermal growth factor receptor (EGFR). RESULTS: KCNQ1OT1 expression was remarkably upregulated in ESCC tissues and cell lines. Overexpression of KCNQ1OT1 markedly promoted ESCC cell proliferation, migration, and invasion and enhanced the expression of N-cadherin, MMP-2, and MMP-9, but inhibited apoptosis and E-cadherin expression in ESCC cell lines; KCNQ1OT1 knockdown exerted the opposite effects. KCNQ1OT1 could directly bind to miR-133b and suppress its expression, and miR-133b reversed the effects of KCNQ1OT1 overexpression in ESCC cells. MiR-133b reduced the expression of epidermal growth factor receptor (EGFR); further, KCNQ1OT1 activated the phosphatidylinositol 3-kinase/AKT serine/threonine kinase 1 (PI3K/AKT) signaling pathway by repressing miR-133b repression and indirectly upregulating EGFR. KCNQ1OT1 expression was positively correlated with EGFR mRNA expression and negatively correlated with miR-133b expression. CONCLUSION: KCNQ1OT1 facilitates ESCC progression by sponging miR-133b and activating the EGFR/PI3K/AKT pathway.


Subject(s)
Humans , Esophageal Neoplasms/genetics , MicroRNAs/genetics , RNA, Long Noncoding/genetics , Esophageal Squamous Cell Carcinoma/genetics , Phosphatidylinositol 3-Kinases , Cell Proliferation/genetics , KCNQ1 Potassium Channel/genetics
2.
Article in English | WPRIM | ID: wpr-216381

ABSTRACT

Long QT syndrome (LQTS) is a genetically heterogeneous disorder associated with sequence variations in more than 10 genes; in some cases, it is caused by large deletions or duplications among the main, known LQTS-associated genes. Here, we describe a 14-month-old Korean boy with congenital hearing loss and prolonged QT interval whose condition was clinically diagnosed as Jervell and Lange-Nielsen syndrome (JLNS), a recessive form of LQTS. Genetic analyses using sequence analysis and multiplex ligation-dependent probe amplification (MLPA) assay revealed a large deletion spanning exons 7-10 as well as a frameshift mutation (c.1893dup; p.Arg632Glnfs*20). To our knowledge, this is the first report of a large deletion in KCNQ1 identified in JLNS patients. This case indicates that a method such as MLPA, which can identify large deletions or duplications needs to be considered in addition to sequence analysis to diagnose JLNS.


Subject(s)
Adolescent , Humans , Male , Alleles , Base Sequence , Electrocardiography , Exons , Frameshift Mutation , Heterozygote , Jervell-Lange Nielsen Syndrome/diagnosis , KCNQ1 Potassium Channel/genetics , Nucleic Acid Amplification Techniques , Pedigree , Sequence Analysis, DNA , Sequence Deletion
3.
Article in English | WPRIM | ID: wpr-196071

ABSTRACT

Mutation or common intronic variants in cardiac ion channel genes have been suggested to be associated with sudden cardiac death caused by idiopathic ventricular tachyarrhythmia. This study aimed to find mutations in cardiac ion channel genes of Korean sudden cardiac arrest patients with structurally normal heart and to verify association between common genetic variation in cardiac ion channel and sudden cardiac arrest by idiopathic ventricular tachyarrhythmia in Koreans. Study participants were Korean survivors of sudden cardiac arrest caused by idiopathic ventricular tachycardia or fibrillation. All coding exons of the SCN5A, KCNQ1, and KCNH2 genes were analyzed by Sanger sequencing. Fifteen survivors of sudden cardiac arrest were included. Three male patients had mutations in SCN5A gene and none in KCNQ1 and KCNH2 genes. Intronic variant (rs2283222) in KCNQ1 gene showed significant association with sudden cardiac arrest (OR 4.05). Four male sudden cardiac arrest survivors had intronic variant (rs11720524) in SCN5A gene. None of female survivors of sudden cardiac arrest had SCN5A gene mutations despite similar frequencies of intronic variants between males and females in 55 normal controls. Common intronic variant in KCNQ1 gene is associated with sudden cardiac arrest caused by idiopathic ventricular tachyarrhythmia in Koreans.


Subject(s)
Adolescent , Adult , Aged , Female , Humans , Male , Middle Aged , Young Adult , Arrhythmias, Cardiac/genetics , Death, Sudden, Cardiac , Ether-A-Go-Go Potassium Channels/genetics , Genetic Markers , Genetic Predisposition to Disease , Genetic Variation , Heart/physiology , Heart Conduction System/abnormalities , KCNQ1 Potassium Channel/genetics , /genetics , Republic of Korea , Tachycardia, Ventricular/genetics , Ventricular Fibrillation/genetics
4.
Article in English | WPRIM | ID: wpr-212605

ABSTRACT

The long QT syndrome (LQTS) is a rare hereditary disorder in which affected individuals have a possibility of ventricular tachyarrhythmia and sudden cardiac death. We investigated 62 LQTS (QTc > or = 0.47 sec) and 19 family members whose genetic study revealed mutation of LQT gene. In the proband group, the modes of presentation were ECG abnormality (38.7%), aborted cardiac arrest (24.2%), and syncope or seizure (19.4%). Median age of initial symptom development was 10.5 yr. Genetic studies were performed in 61; and mutations were found in 40 cases (KCNQ1 in 19, KCNH2 in 10, SCN5A in 7, KCNJ2 in 3, and CACNA1C in 1). In the family group, the penetrance of LQT gene mutation was 57.9%. QTc was longer as patients had the history of syncope (P = 0.001), ventricular tachycardia (P = 0.017) and aborted arrest (P = 0.010). QTc longer than 0.508 sec could be a cut-off value for major cardiac events (sensitivity 0.806, specificity 0.600). Beta-blocker was frequently applied for treatment and had significant effects on reducing QTc (P = 0.007). Implantable cardioverter defibrillators were applied in 6 patients. Congenital LQTS is a potentially lethal disease. It shows various genetic mutations with low penetrance in Korean patients.


Subject(s)
Adolescent , Adult , Aged , Aged, 80 and over , Child , Child, Preschool , Humans , Infant , Middle Aged , Young Adult , Asian People/genetics , Calcium Channels/genetics , Electrocardiography , Heart Arrest/genetics , KCNQ1 Potassium Channel/genetics , KCNQ2 Potassium Channel/genetics , Long QT Syndrome/diagnosis , Mutation/genetics , /genetics , Penetrance , Potassium Channels, Inwardly Rectifying/genetics , Republic of Korea , Risk Factors , Seizures/genetics
5.
Yonsei med. j ; Yonsei med. j;: 352-357, 2013.
Article in English | WPRIM | ID: wpr-89576

ABSTRACT

PURPOSE: Patients with gestational diabetes mellitus (GDM) have been reported to exhibit the same genetic susceptibility as that observed in those with type 2 diabetes mellitus (T2DM). Recent polymorphism studies have shown that several genes are related to T2DM and GDM. The aim of this study was to examine whether certain candidate genes, previously shown to be associated with T2DM, also offer a specific genetic predisposition to GDM. MATERIALS AND METHODS: The current study was conducted in 136 Korean pregnant women, who gave birth at Gil Hospital, from October 2008 to May 2011. These study subjects included 95 subjects with GDM and 41 non-diabetic controls. We selected the specific genes of PPARgamma2, IGF2BP2, and KCNQ1 for study and amplified them using the polymerase chain reaction. This was followed by genotyping for single nucleotide polymorphisms. We then compared the genotype frequencies between patients with GDM and non-diabetic controls using the chi2 test. We obtained and analyzed clinical information using Student's t-test, and statistical analyses were conducted using logistic regression with SPSS Statistics software, version 19.0. RESULTS: Significant differences were observed in maternal age, body mass index, weight gain and weight at time of delivery between the groups compared. Among pregnant women, polymorphisms in PPARgamma2 and IGF2BP2 were shown to be highly correlated with GDM occurrence, whereas no correlation was found for KCNQ1 polymorphisms. CONCLUSION: Our results indicated that genetic polymorphisms could also be of value in predicting the occurrence and diagnosis of GDM.


Subject(s)
Female , Humans , Pregnancy , Diabetes, Gestational/genetics , Genetic Association Studies , Genetic Predisposition to Disease , Genotype , KCNQ1 Potassium Channel/genetics , Logistic Models , PPAR gamma/genetics , Polymorphism, Single Nucleotide , RNA-Binding Proteins/genetics , Republic of Korea
6.
J. forensic med ; Fa yi xue za zhi;(6): 337-346, 2012.
Article in Chinese | WPRIM | ID: wpr-983757

ABSTRACT

OBJECTIVE@#To investigate KCNQ1, KCNH2, KCNE1 and KCNE2 gene variants in the cases of sudden manhood death syndrome (SMDS).@*METHODS@#One hundred and sixteen sporadic cases of SMDS and one hundred and twenty-five healthy controlled samples were enrolled. Genomic DNA was extracted from blood samples. Gene variants of KCNQ1, KCNH2, KCNE1 and KCNE2 were screened by direct sequencing.@*RESULTS@#A total of 14 mutations and 14 SNP were detected. Two non-synonymous mutations of them were newfound. There was no non-synonymous mutation found in the control group.@*CONCLUSION@#There are KCNQ1, KCNH2, KCNE1 and KCNE2 gene variants found in Chinese SMDS cases. KCNQ1, KCNH2, KCNE1 and KCNE2 gene mutation may correlate partly with the occurrence of some cases of the SMDS in China.


Subject(s)
Humans , Base Sequence , Case-Control Studies , China , DNA Mutational Analysis , Death, Sudden/ethnology , ERG1 Potassium Channel , Ether-A-Go-Go Potassium Channels/genetics , KCNQ1 Potassium Channel/genetics , Long QT Syndrome , Mutation , Polymorphism, Single Nucleotide , Potassium Channels , Potassium Channels, Voltage-Gated/genetics
7.
Arq. bras. cardiol ; Arq. bras. cardiol;96(3): 172-178, mar. 2011. ilus, tab
Article in Portuguese | LILACS | ID: lil-581465

ABSTRACT

FUNDAMENTO: A síndrome do QT longo (SQTL) é uma síndrome arrítmica herdada com aumento do intervalo QT e risco de morte súbita. Mutações nos genes KCNQ1, KCNH2 e SCN5A respondem por 90 por cento dos casos com genótipo determinado, e a genotipagem é informativa para aconselhamento genético e melhor manejo da doença. OBJETIVO: Investigação molecular e análise computacional de variantes gênicas de KCNQ1, KCNH2 e SCN5A associadas à SQTL em famílias portadoras da doença. MÉTODOS: As regiões codificantes dos genes KCNQ1, KCNH2 e SCN5A de pacientes com SQTL e familiares foram sequenciadas e analisadas utilizando o software Geneious ProTM. RESULTADOS: Foram investigadas duas famílias com critérios clínicos para SQTL. A probanda da Família A apresentava QTC = 562 ms, Escore de Schwartz = 5,5. A genotipagem identificou a mutação G1714A no gene KCNH2. Foi observado QTC = 521 ± 42 ms nos familiares portadores da mutação contra QTC = 391 ± 21 ms de não portadores. A probanda da Família B apresentava QTc = 551 ms, Escore de Schwartz = 5. A genotipagem identificou a mutação G1600T, no mesmo gene. A análise dos familiares revelou QTC = 497 ± 42 ms nos portadores da mutação, contra QTC = 404 ± 29 ms nos não portadores. CONCLUSÃO: Foram encontradas duas variantes gênicas previamente associadas à SQTL em duas famílias com diagnóstico clínico de SQTL. Em todos os familiares portadores das mutações foi observado o prolongamento do intervalo QT. Foi desenvolvida uma estratégia para identificação de variantes dos genes KCNQ1, KCNH2 e SCN5A, possibilitando o treinamento de pessoal técnico para futura aplicação na rotina diagnóstica.


BACKGROUND: The long QT syndrome (LQTS) is an inherited arrhythmia syndrome with increased QT interval and risk of sudden death. Mutations in genes KCNQ1, KCNH2 and SCN5A account for 90 percent of cases with genotype determined, and genotyping is informative for genetic counseling and better disease management. OBJECTIVE: Molecular investigation and computational analysis of gene variants of KCNQ1, KCNH2 and SCN5A associated with LQTS, in families with the disease. METHODS: The coding regions of genes KCNQ1, KCNH2 and SCN5A in patients with LQTS and their family members were sequenced and analyzed using Geneious ProTM software. RESULTS: Two families with clinical criteria for LQTS were investigated. The proband of Family A had QTC = 562 ms, Schwartz Score = 5.5. The genotyping identified the G1714A mutation in the KCNH2 gene. QTC = 521 ± 42 ms was observed in family members carrying the mutation against QTC = 391 ± 21 ms for non-carriers. The proband of Family B had QTc = 551 ms, Schwartz Score = 5.5. The genotyping identified the G1600T mutation, in the same gene. The analysis of family members revealed QTC = 497 ± 42 ms in mutation carriers, compared with QTC = 404 ± 29 ms in non-carriers. CONCLUSION: Two gene variants previously associated with LQTS were found in two families clinically diagnosed with LQTS. The prolongation of the QT interval was observed in all family members carrying the mutations. A strategy was developed to identify variants of genes KCNQ1, KCNH2 and SCN5A, making it possible to train technical staff for future application to diagnosis routine.


FUNDAMENTO: El síndrome del QT largo (SQTL) es un síndrome arrítmico heredado con aumento del intervalo QT y riesgo de muerte súbita. Mutaciones en los genes KCNQ1, KCNH2 y SCN5A responden por 90 por ciento de los casos con genotipo determinado, y el genotipaje es informativo para aconsejamiento genético y mejor manejo de la enfermedad. OBJETIVO: Investigación molecular y análisis computacional de variantes génicas de KCNQ1, KCNH2 y SCN5A asociadas a la SQTL en familias portadoras de la enfermedad. MÉTODOS: Las regiones codificantes de los genes KCNQ1, KCNH2 y SCN5A de pacientes con SQTL y familiares fueron secuenciadas y analizadas utilizando el software Geneious Pro®. RESULTADOS: Fueron investigadas dos familias con criterios clínicos para SQTL. La probanda de la Familia A presentaba QT C = 562 ms, Escore de Schwartz = 5,5. El genotipaje identificó la mutación G1714A en el gen KCNH2. Fue observado QT C = 521 ± 42 ms en los familiares portadores de la mutación contra QT C = 391 ± 21 ms de no portadores. La probanda de la Familia B presentaba QT C = 551 ms, Escore de Schwartz = 5. El genotipaje identificó la mutación G1600T, en el mismo gen. El análisis de los familiares reveló QT C = 497 ± 42 ms en los portadores de la mutación, contra QT C = 404 ± 29 ms en los no portadores. CONCLUSIÓN: Fueron encontradas dos variantes génicas previamente asociadas a la SQTL en dos familias con diagnóstico clínico de SQTL. En todos los familiares portadores de las mutaciones fue observada la prolongación del intervalo QT. Fue desarrollada una estrategia para identificación de variantes de los genes KCNQ1, KCNH2 y SCN5A, posibilitando el entrenamiento de personal técnico para futura aplicación en la rutina diagnóstica.


Subject(s)
Adolescent , Adult , Aged , Aged, 80 and over , Child , Child, Preschool , Female , Humans , Infant , Male , Middle Aged , Young Adult , Ether-A-Go-Go Potassium Channels/genetics , Genetic Variation/genetics , KCNQ1 Potassium Channel/genetics , Long QT Syndrome/genetics , Sodium Channels/genetics , Death, Sudden, Cardiac/etiology , Genotype , Long QT Syndrome/diagnosis , Polymerase Chain Reaction , Risk Factors , Sequence Analysis, DNA/methods
8.
Article in English | WPRIM | ID: wpr-14299

ABSTRACT

The Jervell and Lange-Nielsen syndrome (JLNS) is an autosomal recessive syndrome characterized by congenital deafness and cardiac phenotype (QT prolongation, ventricular arrhythmias, and sudden death). JLNS has been shown to occur due to homozygous mutation in KCNQ1 or KCNE1. There have been a few clinical case reports on JLNS in Korea; however, these were not confirmed by a genetic study. We identified compound heterozygous mutations in KCNQ1 in a 5-yr-old child with JLNS, who visited the hospital due to recurrent syncope and seizures and had congenital sensorineural deafness. His electrocardiogram revealed a markedly prolonged corrected QT interval with T wave alternans. The sequence analysis of the proband revealed the presence of novel compound heterozygous deletion/splicing error mutations (c.828-830 delCTC, p.S277del/c.921G>A, p.V307V). Each mutation in KCNQ1 was identified on the maternal and paternal side. With beta-blocker therapy the patient has remained symptom-free for three and a half years.


Subject(s)
Child, Preschool , Humans , Male , Asian People/genetics , Electrocardiography , Exons , Family , Gene Deletion , Heterozygote , Jervell-Lange Nielsen Syndrome/diagnosis , KCNQ1 Potassium Channel/genetics , Mutation , Pedigree , Republic of Korea
SELECTION OF CITATIONS
SEARCH DETAIL