Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 4 de 4
Filter
Add filters








Language
Year range
1.
Chinese journal of integrative medicine ; (12): 1007-1017, 2023.
Article in English | WPRIM | ID: wpr-1010281

ABSTRACT

OBJECTIVE@#To explore the mechanism of effects of total saponin fraction from Dioscorea Nipponica Makino (TSDN) on M1/M2 polarization of monocytes/macrophages and arachidonic acid (AA) pathway in rats with gouty arthritis (GA).@*METHODS@#Seventy-two Sprague Dawley rats were randomly divided into 4 groups (n=18 in each): normal, model, TSDN at 160 mg/kg, and celecoxib at 43.3 mg/kg. Monosodium urate crystal (MSU) was injected into the rats' ankle joints to induce an experimental GA model. Blood and tissue samples were collected on the 3rd, 5th, and 8th days of drug administration. Histopathological changes in the synovium of joints were observed via hematoxylin and eosin (HE) staining. The expression levels of arachidonic acid (AA) signaling pathway were assessed via real-time polymerase chain reaction (qPCR) and Western blot. Flow cytometry was used to determine the proportion of M1 and M2 macrophages in the peripheral blood. An enzyme-linked immunosorbent assay (ELISA) was used to detect interleukine (IL)-1 β, tumor necrosis factor-alpha (TNF-α), IL-4, IL-10, prostaglandin E2 (PGE2), and leukotriene B4 (LTB4).@*RESULTS@#HE staining showed that TSDN improved the synovial tissue. qPCR and Western blot showed that on the 3rd, 5th and 8th days of drug administration, TSDN reduced the mRNA and protein expressions of cyclooxygenase (COX)2, microsomal prostaglandin E synthase-1 derived eicosanoids (mPGES-1), 5-lipoxygenase (5-LOX), recombinant human mothers against decapentaplegic homolog 3 (Smad3), nucleotide-binding oligomerization domain-like receptor protein 3 (NALP3), and inducible nitric oxide synthase (iNOS) in rats' ankle synovial tissues (P<0.01). TSDN decreased COX1 mRNA and protein expression on 3rd and 5th day of drug administration and raised it on the 8th day (both P<0.01). It lowered CD68 protein expression on days 3 (P<0.01), as well as mRNA and protein expression on days 5 and 8 (P<0.01). On the 3rd, 5th, and 8th days of drug administration, TSDN elevated the mRNA and protein expression of Arg1 and CD163 (P<0.01). Flow cytometry results showed that TSDN decreased the percentage of M1 macrophages while increasing the percentage of M2 in peripheral blood (P<0.05 or P<0.01). ELISA results showed that on the 3rd, 5th, and 8th days of drug administration, TSDN decreased serum levels of IL-1 β, TNF-α, and LTB4 (P<0.01), as well as PGE2 levels on days 3rd and 8th days (P<0.05 or P<0.01); on day 8 of administration, TSDN increased IL-4 serum levels and enhanced IL-10 contents on days 5 and 8 (P<0.05 or P<0.01).@*CONCLUSION@#The anti-inflammatory effect of TSDN on rats with GA may be achieved by influencing M1/M2 polarization through AA signaling pathway.


Subject(s)
Rats , Humans , Animals , Arthritis, Gouty/drug therapy , Monocytes/pathology , Interleukin-10/metabolism , Arachidonic Acid/pharmacology , Dioscorea/chemistry , Rats, Wistar , Tumor Necrosis Factor-alpha/metabolism , Saponins/therapeutic use , Interleukin-4/metabolism , Leukotriene B4/pharmacology , Rats, Sprague-Dawley , Macrophages , Signal Transduction , RNA, Messenger/metabolism
2.
Experimental & Molecular Medicine ; : 45-50, 2005.
Article in English | WPRIM | ID: wpr-18132

ABSTRACT

Leukotriene B4(LTB4), derived from arachidonic acid, is a potent chemotactic agent and activating factor for hematopoietic cells. In addition to host defense in vivo, several eicosanoids have been reported to be involved in stem cell differentiation or proliferation. In this study, we investigated the effect of LTB4 on human cord blood CD34+ hematopoietic stem cells (HSCs). LTB4 was shown to induce proliferation of HSC and exert anti-apoptotic effect on the stem cells. Blockade of interaction between LTB4 and its receptor enhanced self-renewal of the stem cells. Effect of LTB4 on differentiation of CD34+ HSCs were confirmed by clonogenic assays, and induction of the expression of BLT2 (the low- affinity LTB4 receptor), during the ex vivo expansion was confirmed by reverse transcription-PCR. Our results suggest that LTB4-BLT2 interaction is involved in the cytokine-induced differentiation and ex vivo expansion of hematopoietic stem cells.


Subject(s)
Humans , Antigens, CD34/metabolism , Apoptosis/drug effects , Cell Differentiation/drug effects , Cell Proliferation/drug effects , Fetal Blood/cytology , Hematopoietic Stem Cells/drug effects , Leukotriene B4/pharmacology , Receptors, Leukotriene B4/genetics , Reverse Transcriptase Polymerase Chain Reaction , Signal Transduction
3.
Journal of Korean Medical Science ; : 36-41, 2003.
Article in English | WPRIM | ID: wpr-63357

ABSTRACT

Primary ciliary dyskinesia is characterized by chronic upper and lower respiratory infections which are caused by the grossly impaired ciliary transport. Since the cilia and neutrophils both utilize microtubular system for their movement, it has been speculated that neutrophil motility such as chemotaxis might be impaired in patients with primary ciliary dyskinesia. Neutrophils were purified from whole blood from 16 patients with primary ciliary dyskinesia and from 15 healthy controls. Chemotactic responses of neutrophils to leukotriene B4 (LTB4), complement 5a (C5a), and formylmethion-ylleucylphenylalanine (fMLP) were examined using the under agarose method. The chemotactic differentials in response to LTB4, C5a, and fMLP in neutrophils from the patient group were significantly lower than the corresponding values in neutrophils from the control group (p<0.05 for all comparisons). The difference in chemotactic index between the two groups was statistically significant for LTB4 and fMLP (p<0.05 for both comparisons), but not for C5a (p=0.20). Neutrophils from patients with primary ciliary dyskinesia showed a decreased chemotactic response as compared with those from normal subjects. It is concluded that the increased frequency of respiratory tract infection in patients with primary ciliary dyskinesia is possibly due to the defective directional migration of neutrophils, as well as to the defective mucociliary clearance of the airways.


Subject(s)
Adolescent , Child , Humans , Male , Chemotactic Factors/pharmacology , Chemotaxis , Cilia/ultrastructure , Comparative Study , Complement C5a/pharmacology , Dose-Response Relationship, Drug , Dyneins/chemistry , Kartagener Syndrome/blood , Kartagener Syndrome/classification , Leukotriene B4/pharmacology , N-Formylmethionine Leucyl-Phenylalanine/pharmacology , Neutrophils/physiology , Neutrophils/ultrastructure
SELECTION OF CITATIONS
SEARCH DETAIL