Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 7 de 7
Filter
1.
Chinese Journal of Burns ; (6): 496-500, 2022.
Article in Chinese | WPRIM | ID: wpr-936038

ABSTRACT

Sphingosine-1-phosphate (S1P) is the main metabolite produced in the process of phospholipid metabolism, which can promote proliferation, migration, and apoptosis of cells, and maintain the barrier function of vascular endothelium. The latest researches showed that S1P can alleviate acute lung injury (ALI) and the inflammation caused by ALI, while the dosage of S1P is still needed to be considered. Mesenchymal stem cells (MSCs) have been a emerging therapy with potential therapeutic effects on ALI because of their characteristics of self-replication and multi-directional differentiation, and their advantages in hematopoiesis, immune regulation, and tissue repair. S1P can promote differentiation of MSCs and participate in immune regulation, while MSCs can regulate the homeostasis of S1P in the body. The synergistic effect of S1P and MSC provides a new treatment method for ALI. This article reviews the production and biological function of S1P, receptor and signal pathway of S1P, the therapeutic effects of S1P on ALI, and the research advances of S1P combined with MSCs in the treatment of ALI, aiming to provide theoretical references for the development of S1P targeted drugs in the treatment of ALI and the search for new combined treatment schemes for ALI.


Subject(s)
Animals , Mice , Acute Lung Injury , Lung/metabolism , Lysophospholipids/pharmacology , Mice, Inbred C57BL , Sphingosine/pharmacology
2.
Indian J Ophthalmol ; 2012 Mar; 60(2): 115-118
Article in English | IMSEAR | ID: sea-138804

ABSTRACT

Background: Apoptosis is a programmed cell death in multicellular organisms, found in a wide variety of conditions, including inflammatory process, everywhere in the body, including the cornea and conjunctiva. Aim: To evaluate the effect of a new topical formulation of sphingosine-1 phosphate on preventing apoptosis of the corneal epithelium. Setting: Medical University. Materials and Methods: We tested several formulations suitable for topical application. Twenty-five rabbits were distributed among five groups. Group 1 comprised the controls. In Group 2, 20% ethanol was applied topically for 20 seconds; in Group 3, 50 μM topical sphingosine-1 phosphate was applied 2 hours prior to 20% ethanol application. In Group 4, 200 μM topical sphingosine-1 phosphate was applied 2 hours before the 20% ethanol application. In Group 5, only 200 μM topical sphingosine-1 phosphate was applied. Apoptosis was evaluated using the terminal deoxynucleotidyl transferase biotin-dUTP Nick End Labeling (TUNEL) assay. Pairwise comparisons were performed using t-tests with Scheffe's correction. Data were analyzed using STATA 9.0 statistical software. Results: A suspension of sphingosine-1 phosphate in the presence of Montanox 80 was stable and could be formulated without sonication. Epithelial apoptosis was detected only in Groups 2 and 3. Conclusion: Sphingosine-1 phosphate can prevent ethanol-induced apoptosis in the corneal epithelium of rabbits.


Subject(s)
Animals , Anti-Infective Agents, Local/toxicity , Apoptosis/drug effects , Corneal Diseases/chemically induced , Corneal Diseases/pathology , Corneal Diseases/prevention & control , Disease Models, Animal , Epithelium, Corneal/drug effects , Ethanol/toxicity , Lysophospholipids/pharmacology , Rabbits , Sphingosine/analogs & derivatives , Sphingosine/pharmacology
3.
Experimental & Molecular Medicine ; : 483-491, 2012.
Article in English | WPRIM | ID: wpr-192554

ABSTRACT

Phosphatidylinositol 3-kinase (PI3K) is essential for both G protein-coupled receptor (GPCR)- and receptor tyrosine kinase (RTK)-mediated cancer cell migration. Here, we have shown that maximum migration is achieved by full activation of phosphatidylinositol 3,4,5-trisphosphate-dependent Rac exchanger 1 (P-Rex1) in the presence of Gbetagamma and PI3K signaling pathways. Lysophosphatidic acid (LPA)-induced migration was higher than that of epidermal growth factor (EGF)-induced migration; however, LPA-induced activation of Akt was lower than that stimulated by EGF. LPA-induced migration was partially blocked by either Gbetagamma or RTK inhibitor and completely blocked by both inhibitors. LPA-induced migration was synergistically increased in the presence of EGF and vice versa. In correlation with these results, sphingosine-1-phosphate (S1P)-induced migration was also synergistically induced in the presence of insulin-like growth factor-1 (IGF-1). Finally, silencing of P-Rex1 abolished the synergism in migration as well as in Rac activation. Moreover, synergistic activation of MMP-2 and cancer cell invasion was attenuated by silencing of P-Rex1. Given these results, we suggest that P-Rex1 requires both Gbetagamma and PI3K signaling pathways for synergistic activation of Rac, thereby inducing maximum cancer cell migration and invasion.


Subject(s)
Humans , Cell Line, Tumor , Cell Movement/drug effects , Enzyme Activation/drug effects , GTP-Binding Protein beta Subunits/metabolism , GTP-Binding Protein gamma Subunits/metabolism , Guanine Nucleotide Exchange Factors/metabolism , Lysophospholipids/pharmacology , Neoplasms/enzymology , Phosphatidylinositol 3-Kinases/metabolism , Proto-Oncogene Proteins c-akt/metabolism , Receptors, G-Protein-Coupled/metabolism , Signal Transduction
4.
Journal of Korean Medical Science ; : 1222-1227, 2010.
Article in English | WPRIM | ID: wpr-187242

ABSTRACT

This study examined whether propofol and aminophylline affect the mobilization of intracellular calcium in human umbilical vein endothelial cells. Intracellular calcium was measured using laser scanning confocal microscopy. Cultured and serum-starved cells on round coverslips were incubated with propofol or aminophylline for 30 min, and then stimulated with lysophosphatidic acid, propofol and aminophylline. The results were expressed as relative fluorescence intensity and fold stimulation. Propofol decreased the concentration of intracellular calcium, whereas aminophylline caused increased mobilization of intracellular calcium in a concentration-dependent manner. Propofol suppressed the lysophosphatidic acid-induced mobilization of intracellular calcium in a concentration-dependent manner. Propofol further prevented the aminophylline-induced increase of intracellular calcium at clinically relevant concentrations. However, aminophylline reversed the inhibitory effect of propofol on the elevation of intracellular calcium by lysophosphatidic acid. Our results suggest that propofol and aminophylline antagonize each other on the mobilization of intracellular calcium in human umbilical vein endothelial cells at clinically relevant concentrations. Serious consideration should be given to how this interaction affects mobilization of intracellular calcium when these two drugs are used together.


Subject(s)
Humans , Aminophylline/antagonists & inhibitors , Anesthetics, Intravenous/antagonists & inhibitors , Bronchodilator Agents/antagonists & inhibitors , Calcium/metabolism , Cells, Cultured , Endothelial Cells/drug effects , Endothelium, Vascular/cytology , Lysophospholipids/pharmacology , Microscopy, Confocal , Propofol/antagonists & inhibitors , Umbilical Veins/cytology
5.
Experimental & Molecular Medicine ; : 584-591, 2009.
Article in English | WPRIM | ID: wpr-34741

ABSTRACT

In this study, we observed that lysophosphatidylglycerol (LPG) completely inhibited a formyl peptide receptor like-1 (FPRL1) agonist (MMK-1)-stimulated chemotactic migration in human phagocytes, such as neutrophils and monocytes. LPG also dramatically inhibited IL-1beta production by another FPRL1 agonist serum amyloid A (SAA) in human phagocytes. However, LPG itself induced intracellular calcium increase and superoxide anion production in human phagocytes. Keeping in mind that phagocytes migration and IL-1beta production by FPRL1 are important for the induction of inflammatory response, our data suggest that LPG can be regarded as a useful material for the modulation of inflammatory response induced by FPRL1 activation.


Subject(s)
Humans , Chemotaxis, Leukocyte/drug effects , Interleukin-1beta/biosynthesis , Lysophospholipids/pharmacology , Monocytes/drug effects , Neutrophils/drug effects , Peptides/metabolism , Phagocytes/drug effects , Receptors, Formyl Peptide/metabolism , Receptors, Lipoxin/metabolism , Serum Amyloid A Protein/metabolism
6.
Experimental & Molecular Medicine ; : 607-616, 2008.
Article in English | WPRIM | ID: wpr-59827

ABSTRACT

Lysophosphatidic acid (LPA) is a bioactive phospholipids and involves in various cellular events, including tumor cell migration. In the present study, we investigated LPA receptor and its transactivation to EGFR for cyclooxygenase-2 (COX-2) expression and cell migration in CAOV-3 ovarian cancer cells. LPA induced COX-2 expression in a dose-dependent manner, and pretreatment of the cells with pharmacological inhibitors of Gi (pertussis toxin), Src (PP2), EGF receptor (EGFR) (AG1478), ERK (PD98059) significantly inhibited LPA- induced COX-2 expression. Consistent to these results, transfection of the cells with selective Src siRNA attenuated COX-2 expression by LPA. LPA stimulated CAOV-3 cell migration that was abrogated by pharmacological inhibitors and antibody of EP2. Higher expression of LPA2 mRNA was observed in CAOV-3 cells, and transfection of the cells with a selective LPA2 siRNA significantly inhibited LPA-induced activation of EGFR and ERK, as well as COX-2 expression. Importantly, LPA2 siRNA also blocked LPA-induced ovarian cancer cell migration. Collectively, our results clearly show the significance of LPA2 and Gi/Src pathway for LPA-induced COX-2 expression and cell migration that could be a promising drug target for ovarian cancer cell metastasis.


Subject(s)
Female , Humans , Butadienes/pharmacology , Cell Line, Tumor , Cell Movement/drug effects , Cyclooxygenase 2/biosynthesis , Extracellular Signal-Regulated MAP Kinases/antagonists & inhibitors , Flavonoids/pharmacology , GTP-Binding Protein alpha Subunits, Gi-Go/antagonists & inhibitors , Lysophospholipids/pharmacology , Nitriles/pharmacology , Ovarian Neoplasms/metabolism , Pertussis Toxin/pharmacology , Protein-Tyrosine Kinases/antagonists & inhibitors , Proto-Oncogene Proteins/antagonists & inhibitors , Pyrimidines/pharmacology , ErbB Receptors/antagonists & inhibitors , Receptors, Lysophosphatidic Acid/metabolism , Receptors, Prostaglandin E/metabolism , Signal Transduction , Transcriptional Activation , Tyrphostins/pharmacology
7.
Experimental & Molecular Medicine ; : 134-143, 2006.
Article in English | WPRIM | ID: wpr-15698

ABSTRACT

Lysophosphatidic acid (LPA) is a phospholipid growth factor that acts through G-protein-coupled receptors. Previously, we demonstrated an altered profile of LPA-dependent cAMP content during the aging process of human diploid fibroblasts (HDFs). In attempts to define the molecular events associated with the age-dependent changes in cAMP profiles, we determined the protein kinase A (PKA) activity, phosphorylation of cAMP-response element binding protein (CREB), and the protein expression of CRE-regulatory genes, c-fos and COX-2 in young and senescent HDFs. We observed in senescent cells, an increase in mRNA levels of the catalytic subunit a of PKA and of the major regulatory subunit Ia. Senescence-associated increase of cAMP after LPA treatment correlated well with increased CREB phosphorylation accompanying activation of PKA in senescent cells. In senescent cells, after LPA treatment, the expression of c-fos and COX-2 decreased initially, followed by an increase. In young HDFs, CREB phosphorylation decreased following LPA treatment, and both c-fos and COX-2 protein levels increased rapidly. CRE-luciferase assay revealed higher basal CRE-dependent gene expression in young HDFs compared to senescent HDFs. However, LPA-dependent slope of luciferase increased more rapidly in senescent cells than in young cells, presumably due to an increase of LPA-induced CREB phosphorylation. CRE-dependent luciferase activation was abrogated in the presence of inhibitors of PKC, MEK1, p38MAPK, and PKA, in both young and senescent HDFs. We conclude that these kinase are coactivators of the expression of CRE-responsive genes in LPA-induced HDFs and that their changed activities during the aging process contribute to the final expression level of CRE-responsive genes.


Subject(s)
Male , Humans , Time Factors , Protein Kinase Inhibitors/pharmacology , Phosphorylation , Lysophospholipids/pharmacology , Luciferases/genetics , Gene Expression/drug effects , Fibroblasts/cytology , Diploidy , Cyclic AMP-Dependent Protein Kinases/genetics , Cyclic AMP Response Element-Binding Protein/metabolism , Cyclic AMP/metabolism , Cells, Cultured , Cellular Senescence/physiology , Catalytic Domain/genetics
SELECTION OF CITATIONS
SEARCH DETAIL