Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 4 de 4
Filter
1.
Rev. Soc. Bras. Med. Trop ; 47(5): 593-598, Sep-Oct/2014. tab, graf
Article in English | LILACS | ID: lil-728890

ABSTRACT

Introduction Kala-azar is a disease resulting from infection by Leishmania donovani and Leishmania infantum. Most patients with the disease exhibit prolonged fever, wasting, anemia and hepatosplenomegaly without complications. However, some patients develop severe disease with hemorrhagic manifestations, bacterial infections, jaundice, and edema dyspnea, among other symptoms, followed by death. Among the parasite molecules that might influence the disease severity are the macrophage migration inhibitory factor-like proteins (MIF1 and MIF2) and N-acetylglucosamine-1-phosphotransferase (NAGT), which act in the first step of protein N-glycosylation. This study aimed to determine whether MIF1, MIF2 and NAGT are virulence factors for severe kala-azar. Methods To determine the parasite genotype in kala-azar patients from Northeastern Brazil, we sequenced the NAGT genes of L. infantum from 68 patients as well as the MIF1 and MIF2 genes from 76 different subjects with diverse clinical manifestations. After polymerase chain reaction (PCR), the fragments were sequenced, followed by polymorphism identification. Results The nucleotide sequencing of the 144 amplicons revealed the absence of genetic variability of the NAGT, MIF1 and MIF2 genes between the isolates. The conservation of these genes suggests that the clinical variability of kala-azar does not depend upon these genes. Additionally, this conservation suggests that these genes may be critical for parasite survival. Conclusions NAGT, MIF1 and MIF2 do not alter the severity of kala-azar. NAGT, MIF1 and MIF2 are highly conserved among different isolates of identical species and exhibit potential for use in phylogenetic inferences or molecular diagnosis. .


Subject(s)
Humans , Leishmania infantum/pathogenicity , Leishmaniasis, Visceral/parasitology , Macrophage Migration-Inhibitory Factors/genetics , Transferases (Other Substituted Phosphate Groups)/genetics , Virulence Factors/genetics , Genotype , Phylogeny , Polymerase Chain Reaction , Severity of Illness Index
2.
Article in English | WPRIM | ID: wpr-147473

ABSTRACT

PURPOSE: To investigate the effect of macrophage migration inhibitory factor (MIF) on corneal sensitivity after laser in situ keratomileusis (LASIK) surgery. METHODS: New Zealand white rabbits were used in this study. A hinged corneal flap (160-microm thick) was created with a microkeratome, and -3.0 diopter excimer laser ablation was performed. Expressions of MIF mRNA in the corneal epithelial cells and surrounding inflammatory cells were analyzed using reverse transcription polymerase chain reaction at 48 hours after LASIK. After LASIK surgery, the rabbits were topically given either 1) a balanced salt solution (BSS), 2) MIF (100 ng/mL) alone, or 3) a combination of nerve growth factor (NGF, 100 ug/mL), neurotrophine-3 (NT-3, 100 ng/mL), interleukin-6 (IL-6, 5 ng/mL), and leukemia inhibitory factor (LIF, 5 ng/mL) four times a day for three days. Preoperative and postoperative corneal sensitivity at two weeks and at 10 weeks were assessed using the Cochet-Bonnet esthesiometer. RESULTS: Expression of MIF mRNA was 2.5-fold upregulated in the corneal epithelium and 1.5-fold upregulated in the surrounding inflammatory cells as compared with the control eyes. Preoperative baseline corneal sensitivity was 40.56 +/- 2.36 mm. At two weeks after LASIK, corneal sensitivity was 9.17 +/- 5.57 mm in the BSS treated group, 21.92 +/- 2.44 mm in the MIF treated group, and 22.42 +/- 1.59 mm in the neuronal growth factors-treated group (MIF vs. BSS, p < 0.0001; neuronal growth factors vs. BSS, p < 0.0001; MIF vs. neuronal growth factors, p = 0.815). At 10 weeks after LASIK, corneal sensitivity was 15.00 +/- 9.65, 35.00 +/- 5.48, and 29.58 +/- 4.31 mm respectively (MIF vs. BSS, p = 0.0001; neuronal growth factors vs. BSS, p = 0.002; MIF vs. neuronal growth factors, p = 0.192). Treatment with MIF alone could achieve as much of an effect on recovery of corneal sensation as treatment with combination of NGF, NT-3, IL-6, and LIF. CONCLUSIONS: Topically administered MIF plays a significant role in the early recovery of corneal sensitivity after LASIK in the experimental animal model.


Subject(s)
Animals , Female , Humans , Rabbits , Epithelium, Corneal/drug effects , Interleukin-6/pharmacology , Keratomileusis, Laser In Situ/methods , Leukemia Inhibitory Factor/pharmacology , Macrophage Migration-Inhibitory Factors/genetics , Models, Animal , Nerve Growth Factor/pharmacology , Nerve Regeneration/drug effects , Neurotrophin 3/pharmacology , RNA, Messenger/metabolism , Recovery of Function/drug effects , Sensation/drug effects
3.
Braz. j. med. biol. res ; 46(9): 746-751, 19/set. 2013. graf
Article in English | LILACS | ID: lil-686569

ABSTRACT

Macrophage migration inhibitory factor (MIF), a pleiotropic cytokine, plays an important role in the pathogenesis of atrial fibrillation; however, the upstream regulation of MIF in atrial myocytes remains unclear. In the present study, we investigated whether and how MIF is regulated in response to the renin-angiotensin system and oxidative stress in atrium myocytes (HL-1 cells). MIF protein and mRNA levels in HL-1 cells were assayed using immunofluorescence, real-time PCR, and Western blot. The result indicated that MIF was expressed in the cytoplasm of HL-1 cells. Hydrogen peroxide (H2O2), but not angiotensin II, stimulated MIF expression in HL-1 cells. H2O2-induced MIF protein and gene levels increased in a dose-dependent manner and were completely abolished in the presence of catalase. H2O2-induced MIF production was completely inhibited by tyrosine kinase inhibitors genistein and PP1, as well as by protein kinase C (PKC) inhibitor GF109203X, suggesting that redox-sensitive MIF production is mediated through tyrosine kinase and PKC-dependent mechanisms in HL-1 cells. These results suggest that MIF is upregulated by HL-1 cells in response to redox stress, probably by the activation of Src and PKC.


Subject(s)
Animals , Mice , Hydrogen Peroxide/pharmacology , Intramolecular Oxidoreductases/drug effects , Macrophage Migration-Inhibitory Factors/drug effects , Myocytes, Cardiac/metabolism , Oxidants/pharmacology , Protein Kinase C/metabolism , src-Family Kinases/metabolism , Angiotensin II/metabolism , Blotting, Western , Cell Line , Immunohistochemistry , Intramolecular Oxidoreductases/genetics , Microscopy, Confocal , Macrophage Migration-Inhibitory Factors/genetics , Oxidative Stress/physiology , Protein Kinase Inhibitors/pharmacology , Real-Time Polymerase Chain Reaction , Renin-Angiotensin System/physiology
SELECTION OF CITATIONS
SEARCH DETAIL