Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 5 de 5
Filter
1.
China Journal of Orthopaedics and Traumatology ; (12): 1075-1080, 2023.
Article in Chinese | WPRIM | ID: wpr-1009188

ABSTRACT

OBJECTIVE@#To explore the effect of miR-143 regulating matrix metalloproteinase(MMP)-13 expression on migration and invasion of osteosarcoma cells.@*METHODS@#The mouse osteosarcoma cell line 143B cells were cultured in 96-well plates, and blank group, negative group, positive group, and intervention group were set up. Then, the blank group did no treatment 50 μg miR-143 mimic was added to positive group, negative group added equal mimic NC (control sequence of miR-143 mimic), the intervention group was added 50 μg miR-143 mimic and 10 μg MMP-13 protein, all groups continued to culture for 3 to 6 hours, and finally the serum was aspirated to treat for half an hour. The protein expressions of miR-143 and MMP-13 in each group were measured by fluorescence quantitative PCR experiment and Western blot experiment, respectively, and the invasion and migration abilities of cells were measured by Transwell and scratch experiments.@*RESULTS@#The expression of MMP-13 protein in the positive group and the intervention group was significantly lower than that in the blank group, and the positive group was lower than the intervention group (P<0.05);The mean numbers of invasive cells in blank group, negative group, positive group and intervention group were (1 000.01±44.77), (959.25±46.32), (245.04±4.33), (634.06±33.78) cells/field, respectively;the scratch healing rate of the positive group and the intervention group was significantly lower than that of the blank group, and the positive group was lower than the intervention group (P<0.05).@*CONCLUSION@#MMP-13 is a target of miR-143, which can reduce the migration and invasion ability of osteosarcoma cells by inhibiting the expression of MMP-13.


Subject(s)
Animals , Mice , Osteosarcoma/pathology , MicroRNAs/genetics , Matrix Metalloproteinase 13/genetics , Neoplasm Invasiveness , Cell Line, Tumor , Cell Movement
2.
Journal of Korean Medical Science ; : 939-945, 2013.
Article in English | WPRIM | ID: wpr-159642

ABSTRACT

This study was done to evaluate whether injections of resveratrol, a natural compound found in the skin of grapes, had anabolic effects on degenerated intervertebral discs in a rabbit model. Two non-continuous lumbar discs were punctured in rabbits to induce disc degeneration. Four weeks and 6 weeks after puncture, the rabbits were treated by injections with dimethylsulfoxide (DMSO) or resveratrol. At 4, 8, and 16 weeks after initial injection, rabbits were sacrificed and the spine was extracted for magnetic resonance image (MRI), mRNA expression, and histological staining. Resveratrol treatment resulted in stronger signal intensity in T2-weighted images. MRI grade showed significantly lower in the resveratrol group than the DMSO group (P = 0.039). In the resveratrol group, aggrecan gene expression was significantly increased than that in the DMSO group at 16 weeks after injection (P = 0.027). MMP-13 mRNA levels in the resveratrol group were significantly decreased than those in the DMSO group at 8 and 16 weeks (P = 0.006 and P = 0.048, respectively). In hematoxylin and eosin stain, resveratrol-treated discs showed the features of regeneration. Histologic grade revealed improvement in resveratrol-treated discs, compared with DMSO-treated discs (P = 0.024). These anabolic effects on degenerated discs indicate that resveratrol is a promising candidate for treatment of degenerative disc disease.


Subject(s)
Animals , Rabbits , Aggrecans/genetics , Anabolic Agents/administration & dosage , Disease Models, Animal , Drug Administration Schedule , Intervertebral Disc Degeneration/drug therapy , Magnetic Resonance Imaging , Matrix Metalloproteinase 13/genetics , RNA, Messenger/metabolism , Spine/diagnostic imaging , Stilbenes/administration & dosage
3.
Experimental & Molecular Medicine ; : 561-570, 2011.
Article in English | WPRIM | ID: wpr-131298

ABSTRACT

Osteoarthritis (OA) is an age-related joint disease that is characterized by degeneration of articular cartilage and chronic pain. Oxidative stress is considered one of the pathophysiological factors in the progression of OA. We investigated the effects of grape seed proanthocyanidin extract (GSPE), which is an antioxidant, on monosodium iodoacetate (MIA)-induced arthritis of the knee joint of rat, which is an animal model of human OA. GSPE (100 mg/kg or 300 mg/kg) or saline was given orally three times per week for 4 weeks after the MIA injection. Pain was measured using the paw withdrawal latency (PWL), the paw withdrawal threshold (PWT) and the hind limb weight bearing ability. Joint damage was assessed using histological and microscopic analysis and microcomputerized tomography. Matrix metalloproteinase-13 (MMP13) and nitrotyrosine were detected using immunohistochemistry. Administration of GSPE to the MIA-treated rats significantly increased the PWL and PWT and this resulted in recovery of hind paw weight distribution (P < 0.05). GSPE reduced the loss of chondrocytes and proteoglycan, the production of MMP13, nitrotyrosine and IL-1beta and the formation of osteophytes, and it reduced the number of subchondral bone fractures in the MIA-treated rats. These results indicate that GSPE is antinociceptive and it is protective against joint damage in the MIA-treated rat model of OA. GSPE could open up novel avenues for the treatment of OA.


Subject(s)
Animals , Humans , Male , Rats , Analgesics/administration & dosage , Antioxidants/administration & dosage , Bone Resorption , Disease Models, Animal , Gene Expression Regulation , Interleukin-1beta/genetics , Iodoacetates/administration & dosage , Knee Joint/drug effects , Matrix Metalloproteinase 13/genetics , Osteoarthritis/chemically induced , Pain , Plant Extracts/administration & dosage , Proanthocyanidins/administration & dosage , Rats, Wistar , Seeds , Tomography, Emission-Computed , Tyrosine/analogs & derivatives , Vitis/immunology
4.
Experimental & Molecular Medicine ; : 561-570, 2011.
Article in English | WPRIM | ID: wpr-131295

ABSTRACT

Osteoarthritis (OA) is an age-related joint disease that is characterized by degeneration of articular cartilage and chronic pain. Oxidative stress is considered one of the pathophysiological factors in the progression of OA. We investigated the effects of grape seed proanthocyanidin extract (GSPE), which is an antioxidant, on monosodium iodoacetate (MIA)-induced arthritis of the knee joint of rat, which is an animal model of human OA. GSPE (100 mg/kg or 300 mg/kg) or saline was given orally three times per week for 4 weeks after the MIA injection. Pain was measured using the paw withdrawal latency (PWL), the paw withdrawal threshold (PWT) and the hind limb weight bearing ability. Joint damage was assessed using histological and microscopic analysis and microcomputerized tomography. Matrix metalloproteinase-13 (MMP13) and nitrotyrosine were detected using immunohistochemistry. Administration of GSPE to the MIA-treated rats significantly increased the PWL and PWT and this resulted in recovery of hind paw weight distribution (P < 0.05). GSPE reduced the loss of chondrocytes and proteoglycan, the production of MMP13, nitrotyrosine and IL-1beta and the formation of osteophytes, and it reduced the number of subchondral bone fractures in the MIA-treated rats. These results indicate that GSPE is antinociceptive and it is protective against joint damage in the MIA-treated rat model of OA. GSPE could open up novel avenues for the treatment of OA.


Subject(s)
Animals , Humans , Male , Rats , Analgesics/administration & dosage , Antioxidants/administration & dosage , Bone Resorption , Disease Models, Animal , Gene Expression Regulation , Interleukin-1beta/genetics , Iodoacetates/administration & dosage , Knee Joint/drug effects , Matrix Metalloproteinase 13/genetics , Osteoarthritis/chemically induced , Pain , Plant Extracts/administration & dosage , Proanthocyanidins/administration & dosage , Rats, Wistar , Seeds , Tomography, Emission-Computed , Tyrosine/analogs & derivatives , Vitis/immunology
5.
Experimental & Molecular Medicine ; : 684-695, 2010.
Article in English | WPRIM | ID: wpr-193635

ABSTRACT

The study investigated the effects of adenovirus-mediated gene transfection of basic fibroblast growth factor (bFGF), bFGF combined with interleukin-1 receptor antagonist protein (IL-Ra) and/or insulin-like growth factor-1 (IGF-1) both in human osteoarthritis (OA) chondrocytes and rabbits OA model. Human OA chondrocytes were delivered by adenovirus-mediated bFGF, IL-Ra and IGF-1 vectors, respectively. Chondrocyte proliferation, glycosaminoglycan (GAG) content, expression of type II collagen, ADAMTS-5, MMP-13, MMP-3 and TIMP-1 were determined. Rabbit OA model was induced by anterior cruciate ligament transaction (ACLT) in knees. Adenoviral vectors encoding human bFGF, IL-Ra and IGF-1 were injected intraarticularly into the knee joints after ACLT. The effects of adenovirus- mediated gene transfection on rabbit OA were evaluated. In vitro, the transfected genes were expressed in cell supernatant of human OA chondrocytes. AdbFGF group significantly promoted chondrocyte proliferation, and increased GAG and type II collagen synthesis than in the OA group. As two or three genes were transfected in different combinations, there was significant enhancement on the GAG content, type II collagen synthesis, and TIMP-1 levels, while ADAMTS-5, MMP-13, and MMP-3 levels were reduced. In vivo, the transfected genes were expressed in synovial fluid of rabbits. Intraarticular delivery of bFGF enhanced the expression of type II collagen in cartilage and decreased cartilage Mankin score compared with the OA control group (P = 0.047; P < 0.01, respectively). Multiple-gene transfection in different combinations showed better results than bFGF transfection alone. This study suggests that bFGF gene transfection is effective in treating experimental OA. Multiple gene transfection has better biologic effects on OA.


Subject(s)
Animals , Humans , Rabbits , Adenoviridae/genetics , Chondrocytes/drug effects , Collagen Type II/genetics , Fibroblast Growth Factor 2/genetics , Genetic Therapy/methods , Genetic Vectors/administration & dosage , Insulin-Like Growth Factor I/genetics , Interleukin 1 Receptor Antagonist Protein/genetics , Interleukin-1/genetics , Matrix Metalloproteinase 13/genetics , Matrix Metalloproteinase 3/genetics , Osteoarthritis/therapy , Tissue Inhibitor of Metalloproteinase-1/genetics , Transfection
SELECTION OF CITATIONS
SEARCH DETAIL