Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 4 de 4
Filter
1.
Journal of Zhejiang University. Science. B ; (12): 757-766, 2020.
Article in English | WPRIM | ID: wpr-1010556

ABSTRACT

Understanding limb development not only gives insights into the outgrowth and differentiation of the limb, but also has clinical relevance. Limb development begins with two paired limb buds (forelimb and hindlimb buds), which are initially undifferentiated mesenchymal cells tipped with a thickening of the ectoderm, termed the apical ectodermal ridge (AER). As a transitional embryonic structure, the AER undergoes four stages and contributes to multiple axes of limb development through the coordination of signalling centres, feedback loops, and other cell activities by secretory signalling and the activation of gene expression. Within the scope of proximodistal patterning, it is understood that while fibroblast growth factors (FGFs) function sequentially over time as primary components of the AER signalling process, there is still no consensus on models that would explain proximodistal patterning itself. In anteroposterior patterning, the AER has a dual-direction regulation by which it promotes the sonic hedgehog (Shh) gene expression in the zone of polarizing activity (ZPA) for proliferation, and inhibits Shh expression in the anterior mesenchyme. In dorsoventral patterning, the AER activates Engrailed-1 (En1) expression, and thus represses Wnt family member 7a (Wnt7a) expression in the ventral ectoderm by the expression of Fgfs, Sp6/8, and bone morphogenetic protein (Bmp) genes. The AER also plays a vital role in shaping the individual digits, since levels of Fgf4/8 and Bmps expressed in the AER affect digit patterning by controlling apoptosis. In summary, the knowledge of crosstalk within AER among the three main axes is essential to understand limb growth and pattern formation, as the development of its areas proceeds simultaneously.


Subject(s)
Animals , Mice , Apoptosis , Body Patterning , Bone Morphogenetic Proteins/biosynthesis , Developmental Biology , Ectoderm/metabolism , Extremities/embryology , Fibroblast Growth Factor 10/metabolism , Fibroblast Growth Factors/biosynthesis , Gene Expression Regulation , Hedgehog Proteins/biosynthesis , Homeodomain Proteins/biosynthesis , Mesoderm/metabolism , Signal Transduction , Wnt Proteins/biosynthesis
2.
Indian J Exp Biol ; 2013 Mar; 51(3): 201-207
Article in English | IMSEAR | ID: sea-147583

ABSTRACT

In the experimental group (shh inhibited group), there were significant decreases in the expression of Oct4, Nanog, Shh, GATA4, Brachyury and Goosecoid, while increases were observed for TAT and Pdx1. The expression of Sox17 did not differ between two control and experimental groups. In experimental group, the amount of GSC positive cells was somehow lower but it seems that there was no difference for Sox17. Shh inhibition induces ESCs to differentiate toward definitive endoderm by committing mesendodermal lineages.


Subject(s)
Animals , Cell Differentiation , Cell Line , Cell Lineage , DNA Primers , Dithizone/pharmacology , Embryonic Stem Cells/cytology , Endoderm/metabolism , Gene Expression Regulation, Developmental , Hedgehog Proteins/metabolism , Homeodomain Proteins/metabolism , Immunohistochemistry , Mesoderm/metabolism , Mice , Microscopy, Fluorescence , Octamer Transcription Factor-3/metabolism , Reverse Transcriptase Polymerase Chain Reaction
3.
Braz. j. med. biol. res ; 40(8): 1071-1078, Aug. 2007. tab, graf
Article in English | LILACS | ID: lil-456812

ABSTRACT

The microenvironment of the tumor plays an important role in facilitating cancer progression and activating dormant cancer cells. Most tumors are infiltrated with inflammatory cells which secrete cytokines such as tumor necrosis factor-alpha (TNF-alpha). To evaluate the role of TNF-alpha in the development of cancer we studied its effects on cell migration with a migration assay. The migrating cell number in TNF-alpha-treated group is about 2-fold of that of the control group. Accordingly, the expression of E-cadherin was decreased and the expression of vimentin was increased upon TNF-alpha treatment. These results showed that TNF-alpha can promote epithelial-mesenchymal transition (EMT) of MCF-7 cells. Further, we found that the expression of Snail, an important transcription factor in EMT, was increased in this process, which is inhibited by the nuclear factor kappa B (NFkB) inhibitor aspirin while not affected by the reactive oxygen species (ROS) scavenger N-acetyl cysteine. Consistently, specific inhibition of NFkB by the mutant IkBalpha also blocked the TNF-alpha-induced upregulation of Snail promoter activity. Thus, the activation of NFkB, which causes an increase in the expression of the transcription factor Snail is essential in the TNF-alpha-induced EMT. ROS caused by TNF-alpha seemed to play a minor role in the TNF-alpha-induced EMT of MCF-7 cells, though ROS per se can promote EMT. These findings suggest that different mechanisms might be responsible for TNF-alpha - and ROS-induced EMT, indicating the need for different strategies for the prevention of tumor metastasis induced by different stimuli.


Subject(s)
Humans , Epithelial Cells/metabolism , Mesoderm/cytology , NF-kappa B/physiology , Reactive Oxygen Species/metabolism , Transcription Factors/metabolism , Tumor Necrosis Factor-alpha/pharmacology , Blotting, Western , Case-Control Studies , Cell Line, Tumor , Cadherins/metabolism , Cell Movement/drug effects , Epithelial Cells/pathology , Mesoderm/metabolism , NF-kappa B/metabolism , Reverse Transcriptase Polymerase Chain Reaction , Tumor Necrosis Factor-alpha/physiology , Vimentin/metabolism
4.
Journal of Korean Medical Science ; : 898-904, 2007.
Article in English | WPRIM | ID: wpr-176592

ABSTRACT

Idiopathic pulmonary fibrosis (IPF) comprises an aggregate of mesenchymal cells. However, the cellular origin of these mesenchymal phenotypes remains unclear. Transforming growth factor beta1 (TGF-beta1) has been known as the main cytokine involved in the pathogenesis of IPF. We examined whether the potent fibrogenic cytokine TGF-beta1 could induce the epithelial-to-mesenchymal transition (EMT) in the human alveolar epithelial cell line, A549, and determined whether snail expression is associated with the phenotypic changes observed in the A549 cells. EMT was investigated with cells morphology changes under phase-contrast microscopy, western blotting, and indirect immunofluorescence stains. E-cadherin and transcription factor, snail, were also evaluated by measuring mRNA levels using reverse transcriptase-polymerase chain rection (RT-PCR) analysis. The data showed that TGF-beta1 induced A549 cells with epithelial cell characteristics to undergo EMT in a concentration-dependent manner. Following TGF-beta1 treatment, A549 cells induced EMT characterized by cells morphological changes, loss of epithelial markers Ecaherin and cytokeratin, increased stress fiber reorganization by F-actin, and cytokeratin replacement by vimentin. Although IL-1beta failed to induce A549 cells to undergo EMT, the combination of TGF-beta1 and IL-1beta showed synergy effects in cells morphology changes and the expression of mesenchymal markers. The snail expression study using RT-PCR analysis provided that loss of E-cadherin expression was associated with snail expression. Stimulation of A54 cells with TGF-beta1 plus IL-1beta revealed a higher level of snail expression. Our data showed that EMT of A549 cells might be closely associated with snail expression.


Subject(s)
Humans , Actins/metabolism , Cadherins/metabolism , Cell Differentiation , Cell Line, Tumor , Dose-Response Relationship, Drug , Epithelium/metabolism , Fluorescent Antibody Technique, Indirect , Gene Expression Regulation, Neoplastic , Keratins/metabolism , Mesoderm/metabolism , Microscopy, Fluorescence , Reverse Transcriptase Polymerase Chain Reaction , Transcription, Genetic , Transforming Growth Factor beta1/metabolism , Vimentin/metabolism
SELECTION OF CITATIONS
SEARCH DETAIL