Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 6 de 6
Filter
1.
J. appl. oral sci ; 19(3): 286-292, May-June 2011. ilus, graf, tab
Article in English | LILACS | ID: lil-588137

ABSTRACT

OBJECTIVE: Applications of resin luting agents and high-power light-emitting diodes (LED) light-curing units (LCUs) have increased considerably over the last few years. However, it is not clear whether the effect of reduced exposure time on cytotoxicity of such products have adequate biocompatibility to meet clinical success. This study aimed at assessing the effect of reduced curing time of five resin luting cements (RLCs) polymerized by high-power LED curing unit on the viability of a cell of L-929 fibroblast cells. MATERIAL AND METHODS: Disc-shaped samples were prepared in polytetrafluoroethylene moulds with cylindrical cavities. The samples were irradiated from the top through the ceramic discs and acetate strips using LED LCU for 20 s (50 percent of the manufacturer's recommended exposure time) and 40 s (100 percent exposure time). After curing, the samples were transferred into a culture medium for 24 h. The eluates were obtained and pipetted onto L-929 fibroblast cultures (3x10(4) per well) and incubated for evaluating after 24 h. Measurements were performed by dimethylthiazol diphenyltetrazolium assay. Statistical significance was determined by two-way ANOVA and two independent samples were compared by t-test. RESULTS: Results showed that eluates of most of the materials polymerized for 20 s (except Rely X Unicem and Illusion) reduced to a higher extent cell viability compared to samples of the same materials polymerized for 40 s. Illusion exhibited the least cytotoxicity for 20 s exposure time compared to the control (culture without samples) followed by Rely X Unicem and Rely X ARC (90.81 percent, 88.90 percent, and 83.11 percent, respectively). For Rely X ARC, Duolink and Lute-It 40 s exposure time was better (t=-1.262 p=0,276; t=-9.399 p=0.001; and t=-20.418 p<0.001, respectively). CONCLUSION: The results of this study suggest that reduction of curing time significantly enhances the cytotoxicity of the studied resin cement materials, therefore compromising their clinical performance.


Subject(s)
Animals , Rats , Curing Lights, Dental , Resin Cements/toxicity , Bisphenol A-Glycidyl Methacrylate/radiation effects , Bisphenol A-Glycidyl Methacrylate/toxicity , Cells, Cultured , Cell Survival/radiation effects , Fibroblasts/radiation effects , Polymerization , Polyethylene Glycols/radiation effects , Polyethylene Glycols/toxicity , Polymethacrylic Acids/radiation effects , Polymethacrylic Acids/toxicity , Resin Cements/radiation effects , Time Factors
2.
J. appl. oral sci ; 19(1): 22-27, Jan.-Feb. 2011. ilus, tab
Article in English | LILACS | ID: lil-578743

ABSTRACT

OBJECTIVES: This study evaluated the effects of light exposure through simulated indirect ceramic restorations (SICR) on hardness (KHN) of dual-cured resin cements (RCs), immediately after light-activation and 24 h later. MATERIAL AND METHODS: Three dual-cured RCs were evaluated: Eco-Link (Ivoclar Vivadent), Rely X ARC (3M ESPE), and Panavia F (Kuraray Medical Inc.). The RCs were manipulated in accordance to the manufacturers' instructions and were placed into cylindrical acrylic matrixes (1-mm-thick and 4-mm diameter). The RC light-activation (Optilux 501; Demetron Kerr) was performed through a glass slide for 120 s (control group), or through 2-mm or 4-mm thick SICRs (IPS Empress II; Ivoclar Vivadent). The specimens were submitted to KHN analysis immediately and 24 h after light-activation. The data obtained at the 2 evaluation intervals were submitted to 2-way ANOVA repeated measures and post-hoc Tukey's test (pre-set alpha of 5 percent). RESULTS: Lower KHN was observed when light-activation was performed through SICRs for Eco-Link at all evaluation intervals and for Rely X ARC 24 h later. For Panavia F, no significant difference in KHN was observed between control and experimental groups, regardless of evaluation interval. Most groups exhibited higher KHN after 24 h than immediately after light-activation, with the exception of Rely X ARC light-activated through SICR, as no significant difference in KHN was found between evaluation intervals. CONCLUSIONS: Light overexposure did not compensate for light intensity attenuation due to the presence of SICR when Rely X and Eco-Link were used. Although hardness of such RCs increased over a 24-h interval, the RCs subjected to light overexposure did not reach the hardness values exhibited after direct light exposure.


Subject(s)
Ceramics/radiation effects , Light-Curing of Dental Adhesives/methods , Resin Cements/radiation effects , Self-Curing of Dental Resins/methods , Analysis of Variance , Bisphenol A-Glycidyl Methacrylate/chemistry , Bisphenol A-Glycidyl Methacrylate/radiation effects , Ceramics/chemistry , Hardness Tests , Materials Testing , Polyethylene Glycols/chemistry , Polyethylene Glycols/radiation effects , Polymerization/radiation effects , Polymethacrylic Acids/chemistry , Polymethacrylic Acids/radiation effects , Resin Cements/chemistry , Surface Properties/radiation effects , Time Factors
3.
J. appl. oral sci ; 18(5): 442-446, Sept.-Oct. 2010. graf, tab
Article in English | LILACS | ID: lil-564176

ABSTRACT

OBJECTIVE: This study analyzed the degree of conversion (DC percent) of four resin-based cements (All Ceram, Enforce, Rely X ARC and Variolink II) activated by two modes (chemical and dual), and evaluated the decrease of DC percent in the dual mode promoted by the interposition of a 2.0-mm-thick IPS Empress 2 disc. MATERIAL AND METHODS: In the chemical activation, the resin-based cements were prepared by mixing equal amounts of base and catalyst pastes. In the dual activation, after mixing, the cements were light-activated at 650 mW/cm² for 40 s. In a third group, the cements were light-activated through a 2.0-mm-thick IPS Empress 2 disc. The DC percent was evaluated in a FT-IR spectrometer equipped with an attenuated total reflectance crystal (ATR). The data were analyzed by two-way ANOVA and Tukey's HSD test. RESULTS: For all resin-based cements, the DC percent was significantly higher with dual activation, followed by dual activation through IPS Empress 2, and chemical activation (p<0.05). Irrespective of the activation mode, Rely X presented the highest DC percent (p<0.05). Chemically activated Variolink and All Ceram showed the worst results (p<0.05). The DC percent decreased significantly when activation was performed through a 2.0-mm-thick IPS Empress 2 disc (p<0.05). CONCLUSION: The results of the present study suggest that resin-based cements could present low DC percent when the materials are dually activated through 2.0 mm of reinforced ceramic materials with translucency equal to or less than that of IPS-Empress 2.


Subject(s)
Curing Lights, Dental , Polymerization/radiation effects , Resin Cements/chemistry , Bisphenol A-Glycidyl Methacrylate/chemistry , Bisphenol A-Glycidyl Methacrylate/radiation effects , Ceramics/chemistry , Hardness , Materials Testing , Methacrylates/chemistry , Methacrylates/radiation effects , Polyethylene Glycols/chemistry , Polyethylene Glycols/radiation effects , Polymethacrylic Acids/chemistry , Polymethacrylic Acids/radiation effects , Resin Cements/radiation effects , Spectroscopy, Fourier Transform Infrared , Surface Properties , Time Factors
4.
Braz. oral res ; 24(3): 263-270, July-Sept. 2010. ilus, graf, tab
Article in English | LILACS | ID: lil-558737

ABSTRACT

The aim of this study was to evaluate: (i) the absorption of photo-initiators and emission spectra of light curing units (LCUs); and (ii) the degree of conversion (DC) of experimental composites formulated with different photo-initiators when activated by different LCUs. Blends of BisGMA, UDMA, BisEMA and TEGDMA with camphorquinone (CQ) and/ or 1-phenyl-1,2-propanedione (PPD) were prepared. Dimethylaminoethyl methacrylate (DMAEMA) was used as co-initiator. Each mixture was loaded with 65 wt percent of silanated filler particles. One quartz-tungsten-halogen - QTH (XL 2500, 3M/ESPE) and two lightemitting diode (LED) LCUs (UltraBlue IS, DMC and UltraLume LED 5, Ultradent) were used for activation procedures. Irradiance (mW/cm²) was calculated by the ratio of the output power by the area of the tip, and spectral distribution with a spectrometer (USB 2000). The absorption curve of each photo-initiator was determined using a spectrophotometer (Varian Cary 5G). DC was assessed by Fourier transformed infrared spectroscopy. Data were submitted to two-way ANOVA and Tukey's test (5 percent). No significant difference was found for DC values when using LED LCUs regardless of the photo-initiator type. However, PPD showed significantly lower DC values than composites with CQ when irradiated with QTH. PPD produced DC values similar to those of CQ, but it was dependent on the LCU type.


Subject(s)
Curing Lights, Dental , Composite Resins/radiation effects , Methacrylates/radiation effects , Camphor/analogs & derivatives , Chalcones/chemistry , Chalcones/radiation effects , Composite Resins/chemistry , Materials Testing , Methacrylates/chemistry , Phase Transition , Photochemical Processes , Polyethylene Glycols/chemistry , Polyethylene Glycols/radiation effects , Polymethacrylic Acids/chemistry , Polymethacrylic Acids/radiation effects , Spectroscopy, Fourier Transform Infrared , Time Factors
5.
J. appl. oral sci ; 18(2): 110-115, Mar.-Apr. 2010. tab
Article in English | LILACS | ID: lil-550401

ABSTRACT

OBJECTIVE: This study evaluated the surface hardness of a resin cement (RelyX ARC) photoactivated through indirect composite resin (Cristobal) disks of different thicknesses using either a light-emitting diode (LED) or quartz tungsten halogen (QTH) light source. MATERIAL AND METHODS: Eighteen resin cement specimens were prepared and divided into 6 groups according to the type of curing unit and the thickness of resin disks interposed between the cement surface and light source. Three indentations (50 g for 15 s) were performed on the top and bottom surface of each specimen and a mean Vickers hardness number (VHN) was calculated for each specimen. The data were analyzed using two-way ANOVA and Tukey-Kramer test was used for post-hoc pairwise comparisons. RESULTS: Increased indirect resin disk thickness resulted in decreased mean VHN values. Mean VHN values for the top surfaces of the resin cement specimens ranged from 23.2 to 46.1 (QTH) and 32.3 to 41.7 (LED). The LED curing light source produced higher hardness values compared to the QTH light source for 2- and 3-mm-thick indirect resin disks. The differences were clinically, but not statistically significant. Increased indirect resin disk thickness also resulted in decreased mean VHN values for the bottom surfaces of the resin cement: 5.8 to 19.1 (QTH) and 7.5 to 32.0 (LED). For the bottom surfaces, a statistically significant interaction was also found between the type of curing light source and the indirect resin disk thickness. CONCLUSION: Mean surface hardness values of resin cement specimens decreased with the increase of indirect resin disk thickness. The LED curing light source generally produced higher surface hardness values.


Subject(s)
Bisphenol A-Glycidyl Methacrylate/radiation effects , Curing Lights, Dental , Light-Curing of Dental Adhesives/methods , Polyethylene Glycols/radiation effects , Polymethacrylic Acids/radiation effects , Resin Cements/radiation effects , Analysis of Variance , Bisphenol A-Glycidyl Methacrylate/chemistry , Hardness , Materials Testing , Polyethylene Glycols/chemistry , Polymethacrylic Acids/chemistry , Resin Cements/chemistry , Statistics, Nonparametric
6.
J. appl. oral sci ; 17(6): 617-622, Nov.-Dec. 2009. ilus, graf, tab
Article in English | LILACS | ID: lil-534430

ABSTRACT

OBJECTIVES: The purpose of this study was to evaluate the Vickers hardness number (VHN) and the in vitro marginal adaptation of inlay restorations of three hybrid composite resins (Filtek Z250, Opallis and Esthet-X) subjected to two post-cure treatments. MATERIAL AND METHODS: For the microhardness test, three different groups were prepared in accordance with the post-cure treatments: control group (only light cure for 40 s), autoclave group (light cure for 40 s + autoclave for 15 min at 130ºC); and microwave group (light cure for 40 s + microwave for 3 min at 450 W). To assess the marginal adaptation, the composite resin was inserted incrementally into a mesial-occlusal-distal cavity brass mold and each increment light-cured for 40 s. A previous reading in micrometers was taken at the cervical wall, using a stereomicroscope magnifying glass equipped with a digital video camera and image-analysis software. Subsequently, the specimens were subjected to the post-cure treatments (autoclave and microwave) and a reading was taken again at the cervical wall. Data were compared using ANOVA for the hardness test, split-plot ANOVA for the adaptation assessment and Tukey's test for multiple comparisons. A significance level of 5 percent was adopted for all analyses. RESULTS: The post-cure treatments increased the hardness of conventional composites (p<0.001) and the gap values of inlay restorations (p<0.01). Filtek Z250 showed higher hardness (p<0.001) and lower gap values than Opallis and Esthet-X (p<0.05). Gap values did not exceed 90 µm for any of the experimental conditions. CONCLUSION: The post-cure treatments increased the VHN and the gap values on the cervical floor of composite resin inlays. Moreover, Filtek Z250 showed the best results, with higher hardness and lower gap values.


Subject(s)
Humans , Composite Resins/chemistry , Dental Marginal Adaptation , Dental Materials/chemistry , Inlays , Bisphenol A-Glycidyl Methacrylate/chemistry , Bisphenol A-Glycidyl Methacrylate/radiation effects , Composite Resins/radiation effects , Dental Polishing , Dental Materials/radiation effects , Hardness , Hot Temperature , Image Processing, Computer-Assisted , Light , Materials Testing , Microwaves , Methacrylates/chemistry , Methacrylates/radiation effects , Polyethylene Glycols/chemistry , Polyethylene Glycols/radiation effects , Polymethacrylic Acids/chemistry , Polymethacrylic Acids/radiation effects , Surface Properties , Time Factors , Video Recording , Water/chemistry
SELECTION OF CITATIONS
SEARCH DETAIL