ABSTRACT
Zinc is an essential micronutrient that is required for optimum plant growth. It is present in soil in insoluble forms. Bacterial solubilization of soil unavailable form of Zn into available form, is an emerging approach to alleviate the Zn deficiency for plants and human beings. Zinc solubilizing bacteria (ZSB) could be a substitute for chemical Zn fertilizer. The present study aimed to isolate and characterize bacterial species from the contaminated soil and evaluate their Zn solubilizing potential. Zn resistant bacteria were isolated and evaluated for their MIC against Zn. Among the 13 isolated bacterial strains ZSB13 showed maximum MIC value upto 30mM/L. The bacterial strain with the highest resistance against Zn was selected for further analysis. Molecular characterization of ZSB13 was performed by 16S rRNA gene amplification which confirmed it as Pseudomonas oleovorans. Zn solubilization was determined through plate assay and broth medium. Four insoluble salts (zinc oxide (ZnO), zinc carbonate (ZnCO3), zinc sulphite (ZnS) and zinc phosphate (Zn3(PO4)2) were used for solubilization assay. Our results shows 11 mm clear halo zone on agar plates amended with ZnO. Likewise, ZSB13 showed significant release of Zn in broth amended with ZnCO3 (17 and 16.8 ppm) and ZnO (18.2 ppm). Furthermore, Zn resistance genes czcD was also enriched in ZSB13. In our study, bacterial strain comprising Zn solubilization potential has been isolated that could be further used for the growth enhancement of crops.
O zinco é um micronutriente essencial necessário para o crescimento ideal das plantas. Ele está presente no solo em formas insolúveis. A solubilização bacteriana da forma indisponível de Zn no solo para a forma disponível é uma abordagem emergente para aliviar a deficiência de Zn em plantas e seres humanos. Bactérias solubilizadoras de zinco (ZSB) podem ser um substituto para fertilizantes químicos de Zn. O presente estudo teve como objetivo isolar e caracterizar espécies bacterianas de solo contaminado e avaliar seu potencial de solubilização de Zn. Bactérias resistentes ao Zn foram isoladas e avaliadas quanto ao seu MIC contra o Zn. Entre as 13 cepas bacterianas isoladas, ZSB13 apresentou valor máximo de MIC de até 30 mM/L. A cepa bacteriana com maior resistência ao Zn foi selecionada para análise posterior. A caracterização molecular de ZSB13 foi realizada por amplificação do gene 16S rRNA que o confirmou como Pseudomonas oleovorans. A solubilização do Zn foi determinada através de ensaio em placa e meio caldo. Quatro sais insolúveis (óxido de zinco (ZnO), carbonato de zinco (ZnCO3), sulfito de zinco (ZnS) e fosfato de zinco (Zn3 (PO4) 2) foram usados para o ensaio de solubilização. Nossos resultados mostram uma zona de halo clara de 11 mm em placas de ágar corrigidas com ZnO. Da mesma forma, ZSB13 mostrou liberação significativa de Zn em caldo alterado com ZnCO3 (17 e 16,8 ppm) e ZnO (18,2 ppm). Além disso, os genes de resistência ao Zn czcD também foram enriquecidos em ZSB13. Em nosso estudo, a cepa bacteriana compreendendo potencial de solubilização de Zn foi isolada e poderia ser usada posteriormente para o aumento do crescimento de safras.
Subject(s)
Pseudomonas/genetics , Pseudomonas/isolation & purification , Soil Chemistry/analysis , Zinc , Zinc OxideABSTRACT
In this study, oil degrading bacteria discovered from fish living near the oil ports at Karachi in Pakistan were characterized. The bacteria isolated from skin, gills, and gut in fish could consume crude oil as a source of carbon and energy. Total 36 isolates were tested using Nutrient Agar (NA) and MSA media with different crude oil concentrations (0.2%, 0.5%, 0.7%, 1%, 2%, and 5%) and 4 out of 36 isolates (two Gram positive and two Gram negative bacteria) were selected for further identification. 16S rRNA gene sequencing revealed that the isolates are related to Bacillus velezensis, Bacillus flexus, Pseudomonas brenneri and Pseudomonas azotoforman. Oil degrading potential of these bacteria was characterized by GC-MS analysis of degradation of oil components in crude oil as well as engine oil. We found that one (2, 6, 10, 14-Tetramethylpentadecane) out of 42 components in the crude oil was fully eliminated and the other oil components were reduced. In addition, 26 out of 42 oil components in the engine oil, were fully eliminated and the rest were amended. Taken together, these studies identify that B. velezensis, B. flexus, P. brenneri and P. azotoforman have high oil degrading potential, which may be useful for degradation of oil pollutants and other commercial applications.
Neste estudo, bactérias degradadoras de óleo descobertas em peixes que vivem perto dos portos de petróleo em Karachi, no Paquistão, foram caracterizadas. As bactérias isoladas da pele, guelras e intestinos dos peixes podem consumir petróleo bruto como fonte de carbono e energia. No total, 36 isolados foram testados usando Agar Nutriente (NA) e meio MSA com diferentes concentrações de óleo bruto (0,2%, 0,5%, 0,7%, 1%, 2% e 5%) e 4 de 36 isolados (dois Gram positivos e duas bactérias Gram negativas) foram selecionadas para posterior identificação. O sequenciamento do gene 16S rRNA revelou que os isolados estão relacionados a Bacillus velezensis, Bacillus flexus, Pseudomonas brenneri e Pseudomonas azotoforman. O potencial de degradação do óleo dessas bactérias foi caracterizado pela análise de GC-MS da degradação dos componentes do óleo no óleo cru, bem como no óleo do motor. Descobrimos que um (2, 6, 10, 14-tetrametilpentadecano) de 42 componentes do óleo cru foi totalmente eliminado e os outros componentes do óleo foram reduzidos. Além disso, 26 dos 42 componentes do óleo do motor foram totalmente eliminados e o restante corrigido. Juntos, esses estudos identificam que B. velezensis, B. flexus, P. brenneri e P. azotoforman têm alto potencial de degradação de óleo, o que pode ser útil para a degradação de poluentes de óleo e outras aplicações comerciais.
Subject(s)
Bacillus/genetics , Bacillus/isolation & purification , Biodegradation, Environmental/methods , Petroleum Pollution/prevention & control , Pseudomonas/genetics , Pseudomonas/isolation & purification , Contaminant Removal/methods , FishesABSTRACT
ABSTRACT Antarctica harbors a great diversity of microorganisms, including bacteria, archaea, microalgae and yeasts. The Pseudomonas genus is one of the most diverse and successful bacterial groups described to date, but only eight species isolated from Antarctica have been characterized. Here, we present three potentially novel species isolated on King George Island. The most abundant isolates from four different environments, were genotypically and phenotypically characterized. Multilocus sequence analysis and 16S rRNA gene analysis of a sequence concatenate for six genes (16S, aroE, glnS, gyrB, ileS and rpoD), determined one of the isolates to be a new Pseudomonas mandelii strain, while the other three are good candidates for new Pseudomonas species. Additionally, genotype analyses showed the three candidates to be part of a new subgroup within the Pseudomonas fluorescens complex, together with the Antarctic species Pseudomonas antarctica and Pseudomonas extremaustralis. We propose terming this new subgroup P. antarctica. Likewise, phenotypic analyses using API 20 NE and BIOLOG® corroborated the genotyping results, confirming that all presented isolates form part of the P. fluorescens complex. Pseudomonas genus research on the Antarctic continent is in its infancy. To understand these microorganisms' role in this extreme environment, the characterization and description of new species is vital.
Subject(s)
Phylogeny , Pseudomonas/isolation & purification , Pseudomonas/classification , Phenotype , Pseudomonas/genetics , Soil Microbiology , DNA, Bacterial/genetics , DNA, Ribosomal/genetics , RNA, Ribosomal, 16S/genetics , Multilocus Sequence Typing , Islands , Genotype , Antarctic RegionsABSTRACT
ABSTRACT Plant Growth Promoting Rhizobacteria (PGPR) have different mechanisms of action in the development of plants, such as growth promotion, production of phytohormones and antibiotic substances and changes in root exudates. These help to control plant diseases. In order to evaluate the potential of microorganisms in the control of Meloidogyne javanica and Ditylenchus spp., five rhizobacteria isolated from rhizosphere of garlic cultivated in the Curitibanos (SC) region were tested. Hatching chambers were set on Petri dishes, in which were added 10 mL of bacterial suspension and 1 mL of M. javanica eggs suspension, at the rate of 4500, on the filter paper of each chamber. The same procedure was performed with 300 juvenile Ditylenchus spp. The experimental design was completely randomized, with four replications. The evaluations were performed every 72 h for nine days. The antagonized population of nematodes was determined in Peters counting chamber, determining the percentage hatching (for M. javanica) and motility (for Ditylenchus spp). Isolates CBSAL02 and CBSAL05 significantly reduced the hatching of M. javanica eggs (74% and 54.77%, respectively) and the motility of Ditylenchus spp. (55.19% and 53.53%, respectively) in vitro. Isolates were identified as belonging to the genera Pseudomonas (CBSAL05) and Bacillus (CBSAL02).
Subject(s)
Animals , Bacillus/physiology , Plant Diseases/prevention & control , Pseudomonas/physiology , Tylenchoidea/microbiology , Bacillus/genetics , Bacillus/isolation & purification , Pest Control, Biological , Plant Diseases/parasitology , Pseudomonas/genetics , Pseudomonas/isolation & purification , Tylenchoidea/physiologyABSTRACT
Background: In recent years, Antarctica has become a key source of biotechnological resources. Native microorganisms have developed a wide range of survival strategies to adapt to the harsh Antarctic environment, including the formation of biofilms. Alginate is the principal component of the exopolysaccharide matrix in biofilms produced by Pseudomonas, and this component is highly demanded for the production of a wide variety of commercial products. There is a constant search for efficient alginate-producing organisms. Results: In this study, a novel strain of Pseudomonas mandelii isolated from Antarctica was characterized and found to overproduce alginate compared with other good alginate producers such as Pseudomonas aeruginosa and Pseudomonas fluorescens. Alginate production and expression levels of the alginate operon were highest at 4°C. It is probable that this alginate-overproducing phenotype was the result of downregulated MucA, an anti-sigma factor of AlgU. Conclusion: Because biofilm formation is an efficient bacterial strategy to overcome stressful conditions, alginate overproduction might represent the best solution for the successful adaptation of P. mandelii to the extreme temperatures of the Antarctic. Through additional research, it is possible that this novel P. mandelii strain could become an additional source for biotechnological alginate production.
Subject(s)
Pseudomonas/metabolism , Alginates/metabolism , Polysaccharides, Bacterial/metabolism , Pseudomonas/growth & development , Pseudomonas/genetics , Adaptation, Biological , Cold Temperature , Microscopy, Confocal , Biofilms , Phaeophyceae , Multilocus Sequence Typing , Real-Time Polymerase Chain Reaction , Antarctic RegionsABSTRACT
Abstract Pseudomonas taiwanensis strain SJ9 is a caprolactam degrader, isolated from industrial wastewater in South Korea and considered to have the potential for caprolactam bioremediation. The genome of this strain is approximately 6.2 Mb (G + C content, 61.75%) with 6,010 protein-coding sequences (CDS), of which 46% are assigned to recognized functional genes. This draft genome of strain SJ9 will provide insights into the genetic basis of its caprolactam-degradation ability.
Subject(s)
Pseudomonas/genetics , Pseudomonas/metabolism , DNA, Bacterial/genetics , DNA, Bacterial/chemistry , Caprolactam/metabolism , Genome, Bacterial , Sequence Analysis, DNA , Pseudomonas/isolation & purification , Base Composition , Water Microbiology , Biotransformation , Open Reading Frames , Molecular Sequence Annotation , Industrial Waste , KoreaABSTRACT
ABSTRACT The goal of this investigation was to isolate competent polynuclear aromatic hydrocarbons degraders that can utilize polynuclear aromatic hydrocarbons of former industrial sites at McDoel Switchyard in Bloomington, Indiana. Using conventional enrichment method based on soil slurry, we isolated, screened and purified two bacterial species strains PB1 and PB2. Applying the ribotyping technique using the 16S rRNA gene analysis, the strains were assigned to the genus Pseudomonas (Pseudomonas plecoglossicida strain PB1 and Pseudomonas sp. PB2). Both isolates showed promising metabolic capacity on pyrene sprayed MS agar plates during the preliminary investigations. Using time course studies in the liquid cultures at calculated concentrations 123, 64, 97 and 94 ppm for naphthalene, chrysene, fluroanthene and pyrene, P. plecoglossicida strain PB1 and Pseudomonas sp. PB2 showed partial utilization of the polynuclear aromatic hydrocarbons. Naphthalene was degraded between 26% and 40%, chrysene 14% and 16%, fluroanthene 5% and 7%; pyrene 8% and 13% by P. plecoglossicida strain PB1 and Pseudomonas sp. PB2 respectively. Based on their growth profile, we developed a model R2 = 1 to predict the degradation rate of slow polynuclear aromatic hydrocarbon-degraders where all the necessary parameters are constant. From this investigation, we confirm that the former industrial site soil microbial communities may be explored for the biorestoration of the industrial site.
Subject(s)
Polycyclic Aromatic Hydrocarbons/metabolism , Pseudomonas/metabolism , Phylogeny , Pseudomonas/classification , Pseudomonas/genetics , Pyrenes/metabolism , Soil/chemistry , Soil Microbiology , Biodegradation, Environmental , Carbon/chemistry , RNA, Ribosomal, 16S/genetics , Chrysenes/metabolism , Naphthalenes/metabolism , Nitrogen/chemistryABSTRACT
Abstract Mercury, which is ubiquitous and recalcitrant to biodegradation processes, threatens human health by escaping to the environment via various natural and anthropogenic activities. Non-biodegradability of mercury pollutants has necessitated the development and implementation of economic alternatives with promising potential to remove metals from the environment. Enhancement of microbial based remediation strategies through genetic engineering approaches provides one such alternative with a promising future. In this study, bacterial isolates inhabiting polluted sites were screened for tolerance to varying concentrations of mercuric chloride. Following identification, several Pseudomonas and Klebsiella species were found to exhibit the highest tolerance to both organic and inorganic mercury. Screened bacterial isolates were examined for their genetic make-up in terms of the presence of genes (merP and merT) involved in the transport of mercury across the membrane either alone or in combination to deal with the toxic mercury. Gene sequence analysis revealed that the merP gene showed 86–99% homology, while the merT gene showed >98% homology with previously reported sequences. By exploring the genes involved in imparting metal resistance to bacteria, this study will serve to highlight the credentials that are particularly advantageous for their practical application to remediation of mercury from the environment.
Subject(s)
Humans , Klebsiella/metabolism , Membrane Transport Proteins/genetics , Membrane Transport Proteins/metabolism , Mercury/metabolism , Pseudomonas/metabolism , Water Pollutants, Chemical/metabolism , Drug Tolerance , Genes, Bacterial , India , Klebsiella/drug effects , Klebsiella/genetics , Molecular Sequence Data , Mercury/toxicity , Pseudomonas/drug effects , Pseudomonas/genetics , Sequence Analysis, DNA , Sequence Homology , Water Pollutants, Chemical/toxicityABSTRACT
In a previous study, three bacterial strains isolated from tropical hydrocarbon-contaminated soils and phylogenetically identified as Achromobacter sp. strain SL1, Pseudomonas sp. strain SL4 and Microbacterium esteraromaticum strain SL6 displayed angular dioxygenation and mineralization of carbazole in batch cultures. In this study, the ability of these isolates to survive and enhance carbazole degradation in soil were tested in field-moist microcosms. Strain SL4 had the highest survival rate (1.8 x 107 cfu/g) after 30 days of incubation in sterilized soil, while there was a decrease in population density in native (unsterilized) soil when compared with the initial population. Gas chromatographic analysis after 30 days of incubation showed that in sterilized soil amended with carbazole (100 mg/kg), 66.96, 82.15 and 68.54% were degraded by strains SL1, SL4 and SL6, respectively, with rates of degradation of 0.093, 0.114 and 0.095 mg kg−1 h−1. The combination of the three isolates as inoculum in sterilized soil degraded 87.13% carbazole at a rate of 0.121 mg kg−1 h−1. In native soil amended with carbazole (100 mg/kg), 91.64, 87.29 and 89.13% were degraded by strains SL1, SL4 and SL6 after 30 days of incubation, with rates of degradation of 0.127, 0.121 and 0.124 mg kg−1 h−1, respectively. This study successfully established the survivability (> 106 cfu/g detected after 30 days) and carbazole-degrading ability of these bacterial strains in soil, and highlights the potential of these isolates as seed for the bioremediation of carbazole-impacted environments.
Subject(s)
Achromobacter/chemistry , Achromobacter/genetics , Achromobacter/isolation & purification , Achromobacter/metabolism , Actinobacteria/chemistry , Actinobacteria/genetics , Actinobacteria/isolation & purification , Actinobacteria/metabolism , Biodegradation, Environmental/chemistry , Biodegradation, Environmental/genetics , Biodegradation, Environmental/isolation & purification , Biodegradation, Environmental/metabolism , Carbazoles/chemistry , Carbazoles/genetics , Carbazoles/isolation & purification , Carbazoles/metabolism , Phylogeny/chemistry , Phylogeny/genetics , Phylogeny/isolation & purification , Phylogeny/metabolism , Pseudomonas/chemistry , Pseudomonas/genetics , Pseudomonas/isolation & purification , Pseudomonas/metabolism , Soil Microbiology/chemistry , Soil Microbiology/genetics , Soil Microbiology/isolation & purification , Soil Microbiology/metabolism , Soil Pollutants/chemistry , Soil Pollutants/genetics , Soil Pollutants/isolation & purification , Soil Pollutants/metabolismABSTRACT
Eight endophytic isolates assigned to Pseudomonas, Azospirillum, and Bacillus genera according to pheno-genotypic features were retrieved from barley seeds under selective pressure for nitrogen-fixers. Genetic relationships among related isolates were investigated through RAPD. Six isolates displayed nitrogen-fixing ability, while all could biosynthesize indolacetic acid in vitro and showed no antibiosis effects against Azospirillum brasilense Az39, a recognized PGPR.
Subject(s)
Azospirillum brasilense/isolation & purification , Bacillus/isolation & purification , Endophytes/isolation & purification , Hordeum/microbiology , Nitrogen Fixation , Pseudomonas/isolation & purification , Seeds/microbiology , Antibiosis , Azospirillum brasilense/classification , Azospirillum brasilense/genetics , Azospirillum brasilense/metabolism , Bacillus/classification , Bacillus/genetics , Bacillus/metabolism , DNA, Bacterial/chemistry , DNA, Bacterial/genetics , DNA, Ribosomal/chemistry , DNA, Ribosomal/genetics , Endophytes/classification , Endophytes/genetics , Endophytes/metabolism , Indoleacetic Acids/metabolism , Molecular Typing , Pseudomonas/classification , Pseudomonas/genetics , Pseudomonas/metabolism , Random Amplified Polymorphic DNA Technique , /genetics , Sequence Analysis, DNAABSTRACT
The endophytic strain Zong1 isolated from root nodules of the legume Sophora alopecuroides was characterized by conducting physiological and biochemical tests employing gfp-marking, observing their plant growth promoting characteristics (PGPC) and detecting plant growth parameters of inoculation assays under greenhouse conditions. Results showed that strain Zong1 had an effective growth at 28 ºC after placed at 4-60 ºC for 15 min, had a wide range pH tolerance of 6.0-11.0 and salt tolerance up to 5% of NaCl. Zong1 was resistant to the following antibiotics (µg/mL): Phosphonomycin (100), Penicillin (100) and Ampicillin (100). It could grow in the medium supplemented with 1.2 mmol/L Cu, 0.1% (w/v) methylene blue and 0.1-0.2% (w/v) methyl red, respectively. Zong1 is closely related to Pseudomonas chlororaphis based on analysis the sequence of 16S rRNA gene. Its expression of the gfp gene indicated that strain Zong1 may colonize in root or root nodules and verified by microscopic observation. Furthermore, co-inoculation with Zong1 and SQ1 (Mesorhizobium sp.) showed significant effects compared to single inoculation for the following PGPC parameters: siderophore production, phosphate solubilization, organic acid production, IAA production and antifungal activity in vitro. These results suggest strains P. chlororaphi Zong1 and Mesorhizobium sp. SQ1 have better synergistic or addictive effect. It was noteworthy that each growth index of co-inoculated Zong1+SQ1 in growth assays under greenhouse conditions is higher than those of single inoculation, and showed a significant difference (p < 0.05) when compared to a negative control. Therefore, as an endophyte P. chlororaphis Zong1 may play important roles as a potential plantgrowth promoting agent.
Subject(s)
Endophytes/isolation & purification , Endophytes/metabolism , Pseudomonas/isolation & purification , Pseudomonas/metabolism , Sophora/microbiology , Antibiosis , Anti-Bacterial Agents/pharmacology , Cluster Analysis , Carboxylic Acids/metabolism , DNA, Bacterial/chemistry , DNA, Bacterial/genetics , DNA, Ribosomal/chemistry , DNA, Ribosomal/genetics , Endophytes/classification , Endophytes/genetics , Fungi/growth & development , Hydrogen-Ion Concentration , Indoleacetic Acids/metabolism , Molecular Sequence Data , Phylogeny , Plant Development , Phosphates/metabolism , Plant Roots/microbiology , Pseudomonas/classification , Pseudomonas/genetics , /genetics , Sequence Analysis, DNA , Siderophores/metabolism , Sodium Chloride/metabolism , Sophora/growth & development , TemperatureABSTRACT
Psychrophilic bacteria, which grow on lactose as a carbon source, were isolated from Antarctic polar sea water. Among the psychrophilic bacteria isolated, strain KNOUC808 was able to grow on lactose at below 5¨¬C, and showed 0.867 unit of o-nitrophenyl ¥â-D-galactopyranoside(ONPG) hydrolyzing activity at 4¨¬C. The isolate was gram-negative, rod, aerobic, catalase positive and oxidase positive. Optimum growth was done at 20¨¬C, pH 6.8-7.2. The composition of major fatty acids in cell of KNOUC801 was C12:0 (5.48 percent), C12:0 3OH (9.21 percent), C16:0 (41.83 percent), C17:0 ¥ø8 (7.24 percent) and C18:1 ¥ø7 (7.04 percent). All suthese results together suggest that it is affiliated with Pseudoalteromonas genus. The 16S rDNA sequence corroborate the phenotypic tests and the novel strain was designated as Pseudoalteromonas sp. KNOUC808. The optimum temperature and pH for lactose hydrolyzing enzyme was 20¨¬C and 7.8, respectively. The enzyme was stable at 4¨¬C for 7 days, but its activity decreased to about 50 percent of initial activity at 37¨¬C in 7 days.
Subject(s)
Lactose/analysis , Lactose/isolation & purification , Pseudomonas/genetics , Pseudomonas/isolation & purification , Methodology as a SubjectABSTRACT
The present work was carried out to study the potential of plant rhizosphere associated bacteria for the biocontrol of potato black scurf disease caused by Rhizoctonia solani Khun AG-3. A total of twenty-eight bacteria isolated from diseased and healthy potato plants grown in the soil of Naran and Faisalabad, Pakistan were evaluated for their antagonistic potential. Nine bacterial strains were found to be antagonistic in vitro, reduced the fungal growth and caused the lysis of sclerotia of R. solani in dual culture assay as well as in extracellular metabolite efficacy test. The selected antagonistic strains were further tested for the production and efficacy of volatile and diffusible antibiotics, lytic enzymes and siderophores against R. solani. Selected antagonistic bacteria were also characterized for growth promoting attributes i.e., phosphate solubilization, nitrogen fixation and indole acetic acid production. Biocontrol efficacy and percent yield increase by these antagonists was estimated in greenhouse experiment. Statistical analysis showed that two Pseudomonas spp. StT2 and StS3 were the most effective with 65.1 and 73.9 percent biocontrol efficacy, as well as 87.3 and 98.3 percent yield increase, respectively. Potential antagonistic bacterial strain StS3 showed maximum homology to Pseudomonas sp. as determined by 16S rRNA gene sequencing. These results suggest that bacterial isolates StS3 and StT2 have excellent potential to be used as effective biocontrol agents promoting plant growth with reduced disease incidence.
Subject(s)
Anti-Bacterial Agents , Base Sequence , In Vitro Techniques , Pest Control, Biological , Plants, Edible , Pseudomonas/genetics , Pseudomonas/metabolism , Rhizobium/genetics , Rhizobium/metabolism , Rhizoctonia/genetics , Rhizoctonia/metabolism , Metabolism , Methods , Methods , VirulenceABSTRACT
We hereby present the complete sequence and annotation of pRG930cm, a spectinomycin/streptomycin/chloramphenicol-resistant cosmid vector. pRG930cm (17,256 bp; GenBank Accession No.: FM174471) has a broad host range, and is stably maintained by a number of Gram-negative bacteria including Pseudomonas spp, Escherichia coli, Agrobacterium tumefaciens and Azorhizobium caulinodans ORS571. pRG930cm is already widely used and its sequence will aid efficient construction and analysis of cosmid libraries.
Subject(s)
Azorhizobium caulinodans/genetics , Cosmids , Escherichia coli/genetics , Pseudomonas/genetics , Agrobacterium tumefaciens/genetics , Chloramphenicol Resistance , Genetic Engineering , Spectinomycin , StreptomycinABSTRACT
Today, toxic effluents have created ecological and health problems in and around the industrial cities resulting in death of nearby living organisms. The aim of this research was to increase the elimination of copper and zinc from copper factory effluents in Kerman/Iran through mutation inducing in metal-resistant bacteria by using Acriflavine, Acridine orange and Ethidium bromide. A total of 20 strains of Pseudomonas spp. were isolated from water and soil of the factory and subjected to microbiological identification. Maximum Inhibitory Concentration [MIC] to Cu and Zn were determined by agar dilution method. Those strains with the highest MIC to these metals [5mM] were subjected to 400-3200mg/L of the above mutagenic agents. After determination of MIC those colonies which were capable to grow on 20mM copper were selected for atomic absorption spectroscopy. According to the atomic absorption spectroscopy of dried biomass obtained from resistant strains after exposure to mutagenic agents, strains 6,7,8,9,10,13 and 16 showed the highest accumulation of CU and Zn [10mM for Cu and 20mM for Zn]. Strain 13 had the highest absorption of Cu [0.35%/mg biomass] and strain 10 showed the highest accumulation of Zn [0.33%/mg biomass]. Elimination of heavy metals by artificially mutated bacteria can be suggested as a cost effective solution to this environmental health issue
Subject(s)
Industrial Waste/adverse effects , Mutation , Copper , Zinc , Environmental Pollution/prevention & control , Pseudomonas/genetics , Costs and Cost AnalysisABSTRACT
This study evaluated the occurrence of enteric bacteria and pseudomonads resistant to tetracycline and β-lactams in the oral cavity of patients exhibiting gingivitis (n=89), periodontitis (n=79), periodontally healthy (n=50) and wearing complete dentures (n=41). Microbial identification and presence of resistance markers associated with the production of β-lactamases and tetracycline resistance were performed by using biochemical tests and PCR. Susceptibility tests were carried out in 201 isolates of enteric cocci and rods. Resistance to ampicillin, amoxicillin/clavulanic acid, imipenem, meropenem and tetracycline was detected in 57.4 percent, 34.6 percent, 2.4 percent, 1.9 percent and 36.5 percent of the isolates, respectively. β-lactamase production was observed in 41.2 percent of tested microorganisms, while the most commonly found β-lactamase genetic determinant was gene blaTEM. Tetracycline resistance was disseminated and a wide scope of tet genes were detected in all studied microbial genus.
Subject(s)
Adult , Female , Humans , Male , Enterobacteriaceae/drug effects , Mouth/microbiology , Pseudomonas/drug effects , Tetracycline Resistance/genetics , beta-Lactam Resistance/genetics , Anti-Bacterial Agents/pharmacology , Biomarkers , Denture, Complete/microbiology , Enterobacteriaceae/genetics , Enterobacteriaceae/isolation & purification , Genes, Bacterial , Gingivitis/microbiology , Polymerase Chain Reaction , Periodontitis/microbiology , Pseudomonas/genetics , Pseudomonas/isolation & purification , Tetracycline/pharmacology , beta-Lactamases/metabolism , beta-Lactamases/pharmacology , beta-Lactams/pharmacologyABSTRACT
A bacterium that grows and expresses plant growth promotion traits at 4°C was isolated from the rhizospheric soil of Amaranth, cultivated at a high altitude location in the North Western Indian Himalayas. The isolate was Gram negative and the cells appeared as rods (2.91 x 0.71 μm in size). It grew at temperatures ranging from 4 to 30°C, with a growth optimum at 28°C. It exhibited tolerance to a wide pH range (5-10; optimum 8.0) and salt concentrations up to 6 percent (wt/vol). Although it was sensitive to Rifampicin (R 20 μg mi-1), Gentamicin (G 3 μg mi-1), and Streptomycin (S 5 μg mi-1), it showed resistance to higher concentrations of Ampicillin (A 500 μg mi-1), Penicillin (P 300 μg mi-1), Polymixin B sulphate (Pb 100 μg mi-1) and Chloramphenicol (C 200 μg mi-1). The 16S rRNA sequence analysis revealed maximum identity with Pseudomonas lurida. The bacterium produced indole Acetic Acid (IAA) and solubilizes phosphate at 4, 15 and 28°C. It also retained its ability to produce rhamnolipids and siderophores at 15°C. Seed bacterization with the isolate enhanced the germination, shoot and root lengths of thirty-day-old wheat seedlings by 19.2, 30.0 & 22.9 percent respectively, as compared to the un-inoculated controls.
Subject(s)
Amaranthus/microbiology , Cold Temperature , Pseudomonas/metabolism , Soil Microbiology , Amaranthus/growth & development , India , Phylogeny , Plant Roots/growth & development , Plant Roots/microbiology , Plant Shoots/growth & development , Plant Shoots/microbiology , Pseudomonas/genetics , Pseudomonas/growth & development , /geneticsABSTRACT
A role for proteolytic bacteria in the exacerbation of influenza virus has been shown in natural hosts such as pigs and humans. Four hundred seven samples were collected from the respiratory tract of individuals presenting clinical manifestations, during influenza season (2003-2005) in São Paulo City. The aim of this study was to evaluate the incidence of determined bacteria co-infecting virus in human respiratory tract. Tests, such as bacteriological, immunofluorescence (IF), RT/PCR and hemagglutination (HA) were used for bacterial and viral investigation. Thirty seven (9.09 percent) positive for influenza virus were screened by IF. The RT/PCR confirmed the presence of influenza virus in these samples. Bacterial and agar casein tests demonstrated that 18 (48.64 percent) individuals were infected with proteolytic bacteria such as Staphylococcus spp., Streptococcus spp. and Pseudomonas spp. Among these samples, 13 (35.13 percent) were co-infected with influenza A virus. Influenza type B, co-infecting bacteria were found in five (13.51 percent) samples. In vitro the S. aureus protease increased the influenza HA titer after contact for 30 min at 25 ºC. Results revealed the occurrence of co-infection with proteolytic bacteria and influenza in the evaluated individuals. This finding corroborates that virus versus bacteria synergism could be able to potentiate respiratory infection, increasing damage to hosts.
O papel da bactéria proteolítica na exacerbação do vírus influenza tem sido demonstrado em hospedeiros naturais como porcos e humanos. Foram coletadas 407 amostras do trato respiratório de indivíduos apresentando manifestações clínicas, durante a estação da influenza (2003-2005) na cidade de São Paulo. Este trabalho teve como objetivo avaliar a incidência de determinadas bactérias que junto com vírus co-infectarem o trato respiratório humano. Testes bacteriológicos, e virológicos como imunofluorescência (IF), RT/PCR e hemaglutinação (HA) foram usados nas investigações viral e bacteriana. Pelo teste de IF foram selecionadas trinta e sete (9,09 por cento) amostras positivas para o vírus influenza. A presença do vírus influenza foi confirmada pela técnica de RT/PCR. Pelos testes bacteriológicos e do agar caseina, verificou-se que 18 (48,64 por cento) dos indivíduos foram infectados com bactérias proteolíticas tais como Staphylococcus spp., Streptococcus spp. e Pseudomonas spp. Destas amostras, 13 (35,13 por cento) foram co-infectadas com vírus influenza tipo A, e 5 (13,51 por cento) com influenza tipo B. No experimento in vitro com influenza e S. aureus, detectou-se aumento do título hemaglutinante deste vírus, após contacto de 30 min a 25 ºC. Os resultados obtidos revelaram a ocorrência de co-infecção com bactéria proteolítica e vírus influenza nos indivíduos avaliados. Estes achados corroboram com a investigação do sinergismo, entre bactéria e vírus, que poderia ser capaz de potencializar infecção respiratória, aumentando os riscos aos hospedeiros.
Subject(s)
Adolescent , Adult , Child , Humans , Bacterial Infections/complications , Influenza A virus/isolation & purification , Influenza B virus/isolation & purification , Influenza, Human/virology , Bacterial Infections/microbiology , Fluorescent Antibody Technique , Hemagglutination , Influenza A virus/genetics , Influenza B virus/genetics , Influenza, Human/complications , Influenza, Human/microbiology , Pseudomonas/enzymology , Pseudomonas/genetics , Pseudomonas/isolation & purification , RNA, Viral/analysis , Reverse Transcriptase Polymerase Chain Reaction , Staphylococcus/enzymology , Staphylococcus/genetics , Staphylococcus/isolation & purification , Streptococcus/enzymology , Streptococcus/genetics , Streptococcus/isolation & purification , Virus ActivationABSTRACT
Fluorescent in situ hybridization (FISH) was carried out using two different oligonucleotide probes specific for Pseudomonas spp. and Acinetobacter spp. These probes were tested against different organisms and were found to be highly specific. Sensitivity testing showed that the probes were able to detect as low as 10 3 CFU/mL. In addition, FISH was carried out directly on positive blood culture samples and the detection of microorganisms took less than 2 h. We believe that FISH is a rapid method that can be used as a routine laboratory diagnostic technique for the detection of Acinetobacter spp. and Pseudomonas spp. in clinical samples.
Subject(s)
Acinetobacter/genetics , Acinetobacter Infections/microbiology , Bacteremia/microbiology , Bacteriological Techniques/methods , Blood/microbiology , Humans , In Situ Hybridization, Fluorescence/methods , Pseudomonas/genetics , Pseudomonas Infections/microbiology , Sensitivity and SpecificityABSTRACT
Varios sistemas genéticos que confieren resistencia a metales pesados, codificados en el cromosoma o en plásmidos, han sido estudiados en bacterias del género pseudomonas y en microorganismos relacionados. Algunos de estos sistemas de tolerancia se conocen ahora a nivel molecular mientras que otros mecanismos no se han analizado aún con detalle. Entre los primeros se encuentran los genes que determinan la resistencia a los cationes derivados de mercurio, cadmio y cobre y los aniones de arsénico y cromo. Excepto para el mercurio, que involucra una transformación redox, las estrategias de resistencia más comunes se basan en la expulsión de los iones tóxicos del citoplasma bacteriano