ABSTRACT
Hearing loss has become increasingly prevalent and causes considerable disability, thus gravely burdening the global economy. Irreversible loss of hair cells is a main cause of sensorineural hearing loss, and currently, the only relatively effective clinical treatments are limited to digital hearing equipment like cochlear implants and hearing aids, but these are of limited benefit in patients. It is therefore urgent to understand the mechanisms of damage repair in order to develop new neuroprotective strategies. At present, how to promote the regeneration of functional hair cells is a key scientific question in the field of hearing research. Multiple signaling pathways and transcriptional factors trigger the activation of hair cell progenitors and ensure the maturation of newborn hair cells, and in this article, we first review the principal mechanisms underlying hair cell reproduction. We then further discuss therapeutic strategies involving the co-regulation of multiple signaling pathways in order to induce effective functional hair cell regeneration after degeneration, and we summarize current achievements in hair cell regeneration. Lastly, we discuss potential future approaches, such as small molecule drugs and gene therapy, which might be applied for regenerating functional hair cells in the clinic.
Subject(s)
Infant, Newborn , Humans , Hair Cells, Auditory, Inner/physiology , Ear, Inner/physiology , Hair Cells, Auditory/physiology , Regeneration/genetics , Stem CellsABSTRACT
Aims: This study aimed to examine the biological response of synthetic nanocomposite material on canine mandibular bone. Methods: Nine healthy adult male local breed dogs aged 12 to 18 months and weighing 10.2 to 15.2 kg were used in the study. Based on healing intervals of 1 and 2 months, the dogs were divided into 2 groups. Each group had 3 subgroups with 3 dogs each. The division was based on the grafting material used to fill the created defect: an empty defect (Control-ve), Beta-Tricalcium Phosphate, and nanocomposite (Beta-Tricalcium Phosphate and nanosilver 1%) . Surgery started after the dogs were anaesthetized. The surgical procedure began with a 5 cm parallel incision along the mandible's lower posterior border. After exposing the periosteum, a three 5mm-diameter, 5-mmdeep critical-size holes were made, 5mm between each one. Each group's grafting material had independent 3 holes. The defects were covered with resorbable collagen membranes followed by suturing of the mucoperiosteal flap. Results: Total densitometric analysis showed no significant differences between groups at 1-month intervals, with the nanocomposite group having a higher mean rank (165.66± 31.21) in comparison to other groups while at 2 months intervals that there was a highly significant difference between three groups as the P-value was (0.000) with the nanocomposite group having a higher mean rank (460.66± 26.40). Conclusions: In the current study, the use of nanocomposites improved osteoconductivity by accelerating new bone formation. Moreover, the encorporation of nanosilver enhanced growth factor activity. These attributes make nanocomposites a promising material for enhancing the bone healing process
Subject(s)
Animals , Dogs , Regeneration , Calcium Phosphates , Bone Transplantation , Bone Substitutes , Nanocomposites , Cone-Beam Computed Tomography , Anti-Bacterial AgentsABSTRACT
Resumen Antecedentes: la ingeniería tisular permite obtener órganos como injertos a partir de tejidos descelularizados, regenerados con células autólogas. Objetivo: descelularizar y regenerar tráqueas porcinas. Material y métodos: se descelularizaron tráqueas porcinas colocándolas cada una en el epiplón de cuatro cerdos Yorkshire para su regeneración in vivo. Una tráquea desce-lularizada con tritón (DT), descelularizada con desoxicolato (DD), descelularizada con desoxicolato y reforzada con un polímero y células epiteliales (DDR), y una nativa crio-preservada (NC). Después de 8 días se obtuvieron la DD, NC y DDR; y al día 15, la DT. Se las evaluó mecánica e histológicamente, se realizó el análisis casuístico. Resultados: las tráqueas descelularizadas conservaron la integridad del cartílago, sin diferencias mecánicas, excepto la DDR con mayor rigidez. Las tráqueas regeneradas presentaron menor rigidez, excepto la DDR que además perdió el epitelio y la vascula-ridad. Las DT, DD mostraron epitelio no respiratorio, fibrosis y vasculogénesis con in-flamación. Conclusiones: las matrices conservaron sus características mecánicas. La regenera-ción in vivo ofrece ventajas como la esterilidad, interacción celular, nutrientes; es senci-llo, factible y económico, pero no hay control del crecimiento celular y vascularización, y los tejidos presentaron alteraciones mecánicas e histológicas. El polímero impidió la re-epitelialización y revascularización. Este estudio abre la posibilidad de mejorar las me-todologías de ingeniería tisular aplicadas al tejido traqueal.
Abstract Introduction: tissue engineering makes it possible to obtain organs as grafts from de-cellularized tissues, regenerated with autologous cells.Objective: decellularize and regenerate porcine tracheas.ARTÍCULO ORIGINAL | Respirar, 2023; 15(3): 188-199 | ISSN 2953-3414 | https://doi.org/10.55720/respirar.15.3.5RECIBIDO: 9 agosto 2023ACEP TADO: 31 agosto 2023 Elisa Barrera-Ramírezhttps://orcid.org/0000-0002-2778-0882Rubén Efraín Garrido-Cardonahttps://orcid.org/0000-0001-6083-5403Alejandro Martínez-Martínezhttps://orcid.org/0000-0003-3448-910XLuis Fernando Plenge-Tellecheahttps://orcid.org/0000-0002-1619-5004Edna Rico-Escobarhttps://orcid.org/0000-0002-0933-0220Esta revista está bajo una licencia de Creative Commons Reconocimiento 4.0 Internacional. Respirar 2023; 15 (3): 189ARTÍCULO ORIGINAL / E. Barrera-Ramírez, R.E. Garrido-Cardona, A. Martínez-Martínez, L.F. Plenge-Tellechea, E. Rico-EscobarDescelularización y regeneración de tráqueaISSN 2953-3414Materials and Methods: Porcine tracheas were decellularized by placing each one in the omentum of four Yorkshire pigs for regeneration in vivo. A trachea decellularized with triton (DT), decellularized with deoxycholate (DD), decellularized with deoxycho-late and reinforced with a polymer, and epithelial cells (DDR), and a cryopreserved na-tive (NC). After 8 days, the DD, NC and DDR were obtained; and on day 15, the DT. The evaluation was mechanically and histologically, performing the case analysis.Results: the decellularized tracheas preserved the integrity of the cartilage, with no me-chanical differences, except for the DDR with greater rigidity. The regenerated trache-as presented less rigidity, except the DDR, which also lost the epithelium and vascular-ity. The DT, DD showed non-respiratory epithelium, fibrosis and vasculogenesis with inflammation.Conclusions: the matrices retained their mechanical characteristics, in vivo regenera-tion offers advantages such as sterility, cell interaction, nutrients; it is simple, feasible and economical, but there is no control of cell growth and vascularization, and the tis-sues presented mechanical and histological alterations. The polymer prevented re-epi-thelialization and revascularization. This study opens the possibility of improving tissue engineering methodologies applied to tracheal tissue.
Subject(s)
Animals , Male , Female , Regeneration/physiology , Trachea/anatomy & histology , Tissue Engineering/methods , Octoxynol , Deoxycholic Acid , Decellularized Extracellular MatrixABSTRACT
SUMMARY: The Masquelet technique or membrane induction is considered new in many ways, born under the need to seek therapeutic options in patients with extensive bone lesions. Since this technique was proposed, hopeful and reproducible results have been reported to different centers throughout the world. That is why in this work we seek to collect information from different authors and their case reports, in addition to presenting a case handled in the O'higgins region with this technique. OBJECTIVES: To review the literature regarding general results in bone consolidation in cases similar to the one exposed, in addition to exposing the Masquelet Technique as management in a patient with extensive bone loss, due to a firearm wound. METHODS: descriptive observational study, in addition to a systematic review in databases such as PubMed/MEDLINE, Elsevier, Cochrane and manually through the Internet in journals and public bodies. This work seeks to collect information from different authors and their case reports, in addition to delving into the technique itself, evaluating its indications, contraindications and protocol to follow. The patient's signature of an informed consent was requested, which is explicitly voluntary, in which he authorizes the review of his file, his background and the use of images and / or x-rays pertinent to the research. RESULTS: Inclusion and exclusion criteria were defined to analyze the characteristics of the selected articles. We present the clinical case of a 27-year-old male patient who suffers high-energy injury by firearm in the middle third of the right leg with exposure and loss of musculoskeletal tissue of 12 cm in diameter, polyfragmentary fracture of the proximal third of tibia and fibula, initially damage control is performed which is complicated by presenting osteomyelitis in said limb. It is handled with Masquelet technique. The induction time was approximately 4 months, after the second surgical time the lesion is consolidated in three months showing results similar to the literature studied.
Subject(s)
Humans , Male , Adult , Orthopedics/methods , Osteogenesis , Bone and Bones/surgery , Osteomyelitis , Regeneration , Bone and Bones/injuries , Bone Cements , Treatment Outcome , Polymethyl Methacrylate/chemistry , Fractures, Bone/therapyABSTRACT
Severe muscle injury is hard to heal and always results in a poor prognosis. Recent studies found that extracellular vesicle-based therapy has promising prospects for regeneration medicine, however, whether extracellular vesicles have therapeutic effects on severe muscle injury is still unknown. Herein, we extracted apoptotic extracellular vesicles derived from mesenchymal stem cells (MSCs-ApoEVs) to treat cardiotoxin induced tibialis anterior (TA) injury and found that MSCs-ApoEVs promoted muscles regeneration and increased the proportion of multinucleated cells. Besides that, we also found that apoptosis was synchronized during myoblasts fusion and MSCs-ApoEVs promoted the apoptosis ratio as well as the fusion index of myoblasts. Furthermore, we revealed that MSCs-ApoEVs increased the relative level of creatine during myoblasts fusion, which was released via activated Pannexin 1 channel. Moreover, we also found that activated Pannexin 1 channel was highly expressed on the membrane of myoblasts-derived ApoEVs (Myo-ApoEVs) instead of apoptotic myoblasts, and creatine was the pivotal metabolite involved in myoblasts fusion. Collectively, our findings firstly revealed that MSCs-ApoEVs can promote muscle regeneration and elucidated that the new function of ApoEVs as passing inter-cell messages through releasing metabolites from activated Pannexin 1 channel, which will provide new evidence for extracellular vesicles-based therapy as well as improving the understanding of new functions of extracellular vesicles.
Subject(s)
Creatine/metabolism , Extracellular Vesicles , Muscle, Skeletal/metabolism , Myoblasts/metabolism , Regeneration , Connexins/metabolismABSTRACT
OBJECTIVE@#To determine the expression level of Sonic hedgehog (Shh) in the passage of hair follicle stem cells (HFSCs), analyze the effect of Shh overexpression on the proliferation activity of HFSCs, and explore the survival of HFSCs after Shh overexpression and its effect on hair follicle regeneration.@*METHODS@#Hair follicles from the normal area (H1 group) and alopecia area (H2 group) of the scalp donated by 20 female alopecia patients aged 40-50 years old were taken, and the middle part of the hair follicle was cut under the microscope to culture, and the primary HFSCs were obtained and passaged; the positive markers (CD29, CD71) and negative marker (CD34) on the surface of the fourth generation HFSCs were identified by flow cytometry. The two groups of HFSCs were transfected with Shh-overexpressed lentivirus. Flow cytometry and cell counting kit 8 assay were used to detect the cell cycle changes and cell proliferation of HFSCs before and after transfection, respectively. Then the HFSCs transfected with Shh lentivirus were transplanted subcutaneously into the back of nude mice as the experimental group, and the same amount of saline was injected as the control group. At 5 weeks after cell transplantation, the expression of Shh protein in the back skin tissue of nude mice was detected by Western blot. HE staining and immunofluorescence staining were used to compare the number of hair follicles and the survival of HFSCs between groups.@*RESULTS@#The isolated and cultured cells were fusiform and firmly attached to the wall; flow cytometry showed that CD29 and CD71 were highly expressed on the surface of the cells, while CD34 was lowly expressed, suggesting that the cultured cells were HFSCs. The results of real-time fluorescence quantitative PCR and Western blot showed that the expression levels of Shh protein and gene in the 4th, 7th, and 10th passages of cells in H1 and H2 groups decreased gradually with the prolongation of culture time in vitro. After overexpression of Shh, the proliferation activity of HFSCs in the two groups was significantly higher than that in the blank group (not transfected with lentivirus) and the negative control group (transfected with negative control lentivirus), and the proliferation activity of HFSCs in H1 group was significantly higher than that in H2 group before and after transfection, showing significant differences ( P<0.05). At 5 weeks after cell transplantation, Shh protein was stably expressed in the dorsal skin of each experimental group; the number of hair follicles and the expression levels of HFSCs markers (CD71, cytokeratin 15) in each experimental group were significantly higher than those in the control group, and the number of hair follicles and the expression levels of HFSCs markers in H1 group were significantly higher than those in H2 group, and the differences were significant ( P<0.05).@*CONCLUSION@#Lentivirus-mediated Shh can be successfully transfected into HFSCs, the proliferation activity of HFSCs significantly increase after overexpression of Shh, which can secrete and express Shh continuously and stably, and promote hair follicle regeneration by combining the advantages of stem cells and Shh.
Subject(s)
Animals , Female , Mice , Alopecia/surgery , Hair Follicle , Hedgehog Proteins/genetics , Mice, Nude , Regeneration , Stem CellsABSTRACT
Atoh1 gene encodes a helix-loop-helix transcription factor which is involved in the generation and differentiation of mammalian auditory hair cells and supporting cells, and regulation of the proliferation of cochlear cells, therefore plays an important role in the pathogenesis and recovery of sensorineural deafness. This study reviews the progress of the Atoh1 gene in hair cell regeneration, with the aim of providing a reference for the study of hair cell regeneration gene therapy for sensorineural deafness.
Subject(s)
Animals , Humans , Basic Helix-Loop-Helix Transcription Factors/genetics , Hair Cells, Auditory/physiology , Transcription Factors , Hearing Loss, Sensorineural , Cell Differentiation , Deafness , Regeneration/genetics , MammalsABSTRACT
Salivary gland (SG) dysfunction, due to radiotherapy, disease, or aging, is a clinical manifestation that has the potential to cause severe oral and/or systemic diseases and compromise quality of life. Currently, the standard-of-care for this condition remains palliative. A variety of approaches have been employed to restore saliva production, but they have largely failed due to damage to both secretory cells and the extracellular matrix (niche). Transplantation of allogeneic cells from healthy donors has been suggested as a potential solution, but no definitive population of SG stem cells, capable of regenerating the gland, has been identified. Alternatively, mesenchymal stem cells (MSCs) are abundant, well characterized, and during SG development/homeostasis engage in signaling crosstalk with the SG epithelium. Further, the trans-differentiation potential of these cells and their ability to regenerate SG tissues have been demonstrated. However, recent findings suggest that the "immuno-privileged" status of allogeneic adult MSCs may not reflect their status post-transplantation. In contrast, autologous MSCs can be recovered from healthy tissues and do not present a challenge to the recipient's immune system. With recent advances in our ability to expand MSCs in vitro on tissue-specific matrices, autologous MSCs may offer a new therapeutic paradigm for restoration of SG function.
Subject(s)
Mesenchymal Stem Cell Transplantation , Mesenchymal Stem Cells , Quality of Life , Regeneration , Salivary Glands , Stem CellsABSTRACT
In growing children, growth plate cartilage has limited self-repair ability upon fracture injury always leading to limb growth arrest. Interestingly, one type of fracture injuries within the growth plate achieve amazing self-healing, however, the mechanism is unclear. Using this type of fracture mouse model, we discovered the activation of Hedgehog (Hh) signaling in the injured growth plate, which could activate chondrocytes in growth plate and promote cartilage repair. Primary cilia are the central transduction mediator of Hh signaling. Notably, ciliary Hh-Smo-Gli signaling pathways were enriched in the growth plate during development. Moreover, chondrocytes in resting and proliferating zone were dynamically ciliated during growth plate repair. Furthermore, conditional deletion of the ciliary core gene Ift140 in cartilage disrupted cilia-mediated Hh signaling in growth plate. More importantly, activating ciliary Hh signaling by Smoothened agonist (SAG) significantly accelerated growth plate repair after injury. In sum, primary cilia mediate Hh signaling induced the activation of stem/progenitor chondrocytes and growth plate repair after fracture injury.
Subject(s)
Mice , Animals , Hedgehog Proteins/genetics , Receptors, G-Protein-Coupled/metabolism , Cilia/metabolism , Cartilage/metabolism , RegenerationABSTRACT
A small proportion of mononuclear diploid cardiomyocytes (MNDCMs), with regeneration potential, could persist in adult mammalian heart. However, the heterogeneity of MNDCMs and changes during development remains to be illuminated. To this end, 12 645 cardiac cells were generated from embryonic day 17.5 and postnatal days 2 and 8 mice by single-cell RNA sequencing. Three cardiac developmental paths were identified: two switching to cardiomyocytes (CM) maturation with close CM-fibroblast (FB) communications and one maintaining MNDCM status with least CM-FB communications. Proliferative MNDCMs having interactions with macrophages and non-proliferative MNDCMs (non-pMNDCMs) with minimal cell-cell communications were identified in the third path. The non-pMNDCMs possessed distinct properties: the lowest mitochondrial metabolisms, the highest glycolysis, and high expression of Myl4 and Tnni1. Single-nucleus RNA sequencing and immunohistochemical staining further proved that the Myl4+Tnni1+ MNDCMs persisted in embryonic and adult hearts. These MNDCMs were mapped to the heart by integrating the spatial and single-cell transcriptomic data. In conclusion, a novel non-pMNDCM subpopulation with minimal cell-cell communications was unveiled, highlighting the importance of microenvironment contribution to CM fate during maturation. These findings could improve the understanding of MNDCM heterogeneity and cardiac development, thus providing new clues for approaches to effective cardiac regeneration.
Subject(s)
Animals , Mice , Diploidy , Heart , Myocytes, Cardiac/metabolism , Cell Communication , Gene Expression Profiling , Mitochondria , Regeneration , Mammals/geneticsABSTRACT
Adenosine triphosphate (ATP) regeneration systems are essential for efficient biocatalytic phosphoryl transfer reactions. Polyphosphate kinase (PPK) is a versatile enzyme that can transfer phosphate groups among adenosine monophosphate (AMP), adenosine diphosphate (ADP), ATP, and polyphosphate (Poly P). Utilization of PPK is an attractive solution to address the problem of ATP regeneration due to its ability to use a variety of inexpensive and stable Poly P salts as phosphate group donors. This review comprehensively summarizes the structural characteristics and catalytic mechanisms of different types of PPKs, as well as the variations in enzyme activity, catalytic efficiency, stability, and coenzyme preference observed in PPKs from different sources. Moreover, recent advances in PPK-mediated ATP regeneration systems and protein engineering of wild-type PPK are summarized.
Subject(s)
Adenosine Triphosphate/metabolism , Adenosine Monophosphate , Polyphosphates/metabolism , Catalysis , RegenerationABSTRACT
Evaluation of ridge alteration after 1 year follow up after immediate loading implant placement. Methods: Ten patients were included in the study, in whom the ridge volume, height, and thickness were evaluated from region of interest (ROI) of tomographic images of the operated areas (test group) and compared to the opposite tooth (control group). Results: After one year, there was no implant loss and all patients were satisfied with the treatment. In the test group there was a statistically significant increase in ridge height (2.89±1.05 mm) when compared to the control group. No significant difference in relation to ridge volume and thickness was observed. In the intragroup evaluation, a significant gain in ridge height (2.65±3.08 mm) was observed when compared to baseline. Conclusion: The placement of an immediate implant, temporary crown, and tissue regeneration in sockets with buccal defects promotes the regeneration of the buccal wall while preventing the reduction of bone volume and thickness
Subject(s)
Humans , Male , Female , Regeneration , Dental Implants , Alveolar Process , HeterograftsABSTRACT
Abstract Objective Histological and macroscopic evaluation of the healing process of acute lesions of the femoral rectus muscle using stem cells derived from adipose tissue-derived stem cells (ADSCs). Method An experimental study was conducted with 18 hind legs of New Zealand rabbits, which were divided into three study groups according to the intervention to be performed. In group I, no surgical procedure was performed; in group II—SHAN, the experimental lesion was performed without any additional intervention protocol; in group III—Intervention, the addition of ADSCs was performed in the same topography of the experimental lesion. After the proposed period, 2 weeks, the material was collected and submitted to macroscopic and histological evaluation. Results The quantitative analysis showed that the addition of ADSCs is related to the reduction of inflammatory cells in the 2-week evaluation (164.2 cells in group II - SHAN to 89.62 cells in group III - ADSC). The qualitative analysis of the slides with Picrosirius red, noticed an increase in orange/yellow fibers in group III - ADSC, which evidences a final healing process. The macroscopic evaluation found no difference between the groups. Conclusion The use of ADSCs in the treatment of acute muscle injury presented histological advantages when compared to their non-use.
Resumo Objetivo Avaliação histológica e macroscópica do processo de cicatrização das lesões agudas do músculo reto femoral, com utilização de células-tronco derivadas de tecido adiposo (ADSCs, na sigla em inglês). Método Foi realizado um estudo experimental com 18 patas traseiras de coelhos Nova Zelândia, que foram divididos em três nos grupos de estudo de acordo com a intervenção a ser realizada. No grupo I não foi realizado procedimento cirúrgico; no grupo II - SHAN foi realizado a lesão experimental sem nenhum protocolo de intervenção adicional; e no grupo III - Intervenção foi realizado a adição de ADSCs na mesma topografia onde foi realizada a lesão experimental. Após o período proposto, 2 semanas, o material foi coletado, submetido a avaliação macroscópica e histológica. Resultados A análise quantitativa demonstrou que a adição de ADSCs está relacionada com a diminuição de células inflamatórias na avaliação com 2 semanas (164,2 células no grupo II - SHAN para 89,62 células no grupo III - ADSC). A análise qualitativa das lâminas coradas com Picrosírius red demonstrou um aumento das fibras de cor laranja/amarela no grupo III - ADSC, o que evidencia um processo final de cicatrização. A avaliação macroscópica não encontrou diferença entre os grupos. Conclusão A utilização de ADSCs no tratamento de lesão muscular aguda apresentou vantagens histológicas quando comparada a sua não utilização.
Subject(s)
Animals , Rabbits , Regeneration , Regenerative Medicine , Mesenchymal Stem Cells , Muscles , Muscular DiseasesABSTRACT
En el campo de la odontología, prevalecen actualmente alternativas terapéuticas con una filosofía conservadora. Sin embargo, con el advenimiento de los tratamientos con células madre (CM), se amplían las posibilidades terapéuticas, que buscan la combinación y el equilibrio entre la intervención tradicional y las posibilidades de reposición de estructuras anatómicas dañadas, a través de la regeneración de tejidos utilizando células madre o sus derivados (AU)
In the dentistry field, therapeutic alternatives with a conservative philosophy currently prevail. However, with the advent of stem cell (SC) treatments, therapeutic possibilities are expanding, seeking a combination and balance between traditional intervention and the pos- sibility of replacing damaged anatomical structures through tissue regeneration, using stem cells or their derivatives (AU)
Subject(s)
Humans , Stem Cells , Tissue Engineering , Mesenchymal Stem Cells/physiology , Periodontal Ligament/physiology , Regeneration/physiology , Tooth/cytology , Tooth Germ/physiology , Biocompatible Materials/therapeutic use , Bone Regeneration/physiology , Dental Pulp/physiology , Tissue Scaffolds , COVID-19/therapyABSTRACT
RESUMEN: La pérdida de un diente resulta en la pérdida de volumen de tejidos duros y blandos lo que dificulta lograr resultados estéticamente satisfactorios. Con el fin de disminuir la morbilidad que provoca un injerto autólogo en el sellado del alveolo se puede reemplazar por una matriz reabsorbible de colágeno. El presente reporte de caso evaluó clínica e histológicamente una matriz colágena de porcino, en la regeneración de tejido blando, durante la instalación de un implante inmediato a una extracción dentaria. A los 6 meses clínicamente se obtuvo un tejido con una apariencia estética final óptima e histológicamente se evidenció la formación de un tejido epitelial y conjuntivo compatible con la de una mucosa normal.
ABSTRACT: Tooth loss results in loss of hard and soft tissue volume, making it difficult to achieve aesthetically pleasing results. In order to decrease the morbidity caused by an autologous graft in the alveolus seal, it can be replaced by a resorbable matrix of collagen. The present case report evaluated clinically and histologically a porcine collagen matrix, in soft tissue regeneration, during the installation of an implant immediately after dental extraction. At 6 months, clinically, a tissue with an optimal final aesthetic appearance was obtained and histologically, the formation of an epithelial and connective tissue compatible with that of a normal mucosa was evidenced.
Subject(s)
Humans , Animals , Female , Middle Aged , Dental Implants , Tooth Loss , Collagen/therapeutic use , Connective Tissue/transplantation , Tooth Socket/surgery , Regeneration , Swine , Tooth ExtractionABSTRACT
The programmed cell death ligand 1 (PD-L1) and its receptor programmed cell death 1 (PD-1) deliver inhibitory signals to regulate immunological tolerance during immune-mediated diseases. However, the role of PD-1 signaling and its blockade effect on human dental pulp stem cells (hDPSCs) differentiation into the osteo-/odontogenic lineage remain unknown. We show here that PD-L1 expression, but not PD-1, is downregulated during osteo-/odontogenic differentiation of hDPSCs. Importantly, PD-L1/PD-1 signaling has been shown to negatively regulate the osteo-/odontogenic differentiation of hDPSCs. Mechanistically, depletion of either PD-L1 or PD-1 expression increased ERK and AKT phosphorylation levels through the upregulation of Ras enzyme activity, which plays a pivotal role during hDPSCs osteo-/odontogenic differentiation. Treatment with nivolumab (a human anti-PD-1 monoclonal antibody), which targets PD-1 to prevent PD-L1 binding, successfully enhanced osteo-/odontogenic differentiation of hDPSCs through enhanced Ras activity-mediated phosphorylation of ERK and AKT. Our findings underscore that downregulation of PD-L1 expression accompanies during osteo-/odontogenic differentiation, and hDPSCs-intrinsic PD-1 signaling inhibits osteo-/odontogenic differentiation. These findings provide a significant basis that PD-1 blockade could be effective immunotherapeutic strategies in hDPSCs-mediated dental pulp regeneration.
Subject(s)
Humans , B7-H1 Antigen/metabolism , Dental Pulp/metabolism , Programmed Cell Death 1 Receptor/metabolism , Regeneration , Stem CellsABSTRACT
Regenerative endodontic therapy is a tissue engineering based approach of treatment for endodontic disease. Its purpose is to achieve the regeneration of the pulp-dentin complex, thus to promote root development of the immature permanent tooth with necrotic pulp. Like other treatments based on tissue engineering techniques, the success of regenerative pulp therapy depends on such three elements as seed cells, scaffold materials and growth factors. Since its inception 20 years ago, there have been various terminologies in the literature, with similarities and differences in connotation. The present article summarizes and analyzes the term evolution, biological basis, clinical considerations and future scientific research directions of regenerative endodontics, in order to find out the unsolved scientific problems and to promote the development and standardization of this technique in clinical practice.
Subject(s)
Humans , Dental Pulp , Dental Pulp Necrosis , Regeneration , Regenerative Endodontics , Root Canal Therapy , Tissue EngineeringABSTRACT
In recent years, great progress has been made in research on the treatment of pulpitis, mainly due to the rapid development of basic and clinical researches in this field, and some achievement from basic research has been applied in clinical practice. Advances in the diagnostic methods for pulpitis can help the clinicians to recognize the true state of pulpitis more accurately and to adopt the corresponding treatment methods including indirect/direct pulp capping, pulpotomy, pulp regeneration and root canal therapy. The new theory of pulpitis diagnosis and the studies on immune defense, repair function of dental pulp and new pulp capping materials have significantly improved the success rate of vital pulp therapy. For diffuse coronary pulpitis or radicular pulpitis, which is difficult to achieve vital pulp therapy successfully, methods of pulp revascularization, cell homing and pulp stem cells-mediated pulp regeneration can also be used as treatment options in addition to root canal therapy. The present article focuses on the research progress on pulpitis treatments and related clinical transformation practices, in order to provide reference on vital pulp therapy and pulp regeneration for clinicians.
Subject(s)
Humans , Dental Pulp , Dental Pulp Capping , Pulpitis/therapy , Pulpotomy , RegenerationABSTRACT
Objective: To investigate the effect of exosomes from mild-inflammation- stimulated human dental pulp stem cells (hDPSC) combined with stromal cell-derived factor-1 (SDF-1) on dental pulp regeneration in rats. Methods: Primary hDPSCs were isolated, cultured and then stimulated by using lipopolysaccharide (LPS). The exosomes from the hDPSCs with (L-EXO) or without (N-EXO) LPS were extracted by overspeed differential centrifugation and were identified by transmission electron microscopy and Western blotting. Forty SD rats, aged 6-8 weeks, were equally divided into S group (SDF-1 alone), L+S group (L-EXO combined with SDF-1), N+S group (N-EXO combined with SDF-1) and blank control group (no substance implanted into the root canal) by random number table method. Bilateral mandibular first molars were used as the experimental teeth to establish pulpless root canal models and different contents were implanted into the root canals according to the groups. All rats were over-anesthetized and sacrificed at the 30th day after content implantation. Bilateral mandibular tissues were taken for histological evaluation by means of HE, Masson and immunohistochemical stainings. Results: The HE staining showed new pulp-like tissue in the root canals of all three experimental groups. The amount of new tissues and the number of cells in the tissues were greatest in L+S group and least in S group. Masson staining showed that the mineralized tissue in L+S group was arranged longitudinally along the root canal wall and the collagen fibers were arranged in an orderly fashion, while those in N+S group showed an irregular and disordered distribution. Quantitative analysis of the area of neovascularization in each group showed that the density of vessels in the L+S group [(2.03±0.65)%] was significantly higher than that in the S group [(0.65±0.05)%] and the N+S group [(1.06±0.38)%] respectively (F=5.879, P<0.05). Immunohistochemical staining showed that the expression of CXC chemokine receptor 4 (CXCR4) was significantly lower in S and L+S groups than in N+S group, with a statistically significant difference (F=8.633, P<0.01). Conclusions: Exosomes secreted by hDPSCs combined with SDF-1 might increase the amount of new tissue in the root canal and the density of blood vessels in the tissue. L-EXO showed a stronger effect than N-EXO did. The combination of L-EXO with SDF-1 might result in more regular arrangement of mineralized tissue and collagen fibers in the regenerative tissues.
Subject(s)
Animals , Humans , Rats , Cell Differentiation , Dental Pulp , Exosomes , Lipopolysaccharides , Rats, Sprague-Dawley , Regeneration , Stem Cells , Stromal CellsABSTRACT
Sweat gland is one of the important appendage organs of the skin, which plays an important role in thermoregulation and homeostasis maintenance. Sweat glands are damaged and unable to self-repair after burns, resulting in perspiration disorders eventually. However, current clinical strategies cannot restore the function of the damaged sweat glands effectively. Therefore, it is urgent to seek treatments that can promote the regeneration of sweat glands and restore their normal functions. Stem cells have extensive sources, low immunogenicity, high proliferation capacity, and multi-directional differentiation potential, which have become a focus in the field of regenerative medicine. In recent years, a variety of stem cells have been induced to differentiate into sweat gland-like tissue with certain secretory function, which provides treatment direction for sweat gland regeneration after burns in clinic. This article reviews the recent research advances on the application of stem cells in sweat gland regeneration from the perspectives of the manner by which stem cells transform into sweat gland cells in different environments and their influencing factors.