Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 4 de 4
Filter
1.
Biol. Res ; 56: 28-28, 2023. ilus, graf, tab
Article in English | LILACS | ID: biblio-1513740

ABSTRACT

BACKGROUND: Skeletal muscle generates force and movements and maintains posture. Under pathological conditions, muscle fibers suffer an imbalance in protein synthesis/degradation. This event causes muscle mass loss and decreased strength and muscle function, a syndrome known as sarcopenia. Recently, our laboratory described secondary sarcopenia in a chronic cholestatic liver disease (CCLD) mouse model. Interestingly, the administration of ursodeoxycholic acid (UDCA), a hydrophilic bile acid, is an effective therapy for cholestatic hepatic alterations. However, the effect of UDCA on skeletal muscle mass and functionality has never been evaluated, nor the possible involved mechanisms. METHODS: We assessed the ability of UDCA to generate sarcopenia in C57BL6 mice and develop a sarcopenic-like phenotype in C2C12 myotubes and isolated muscle fibers. In mice, we measured muscle strength by a grip strength test, muscle mass by bioimpedance and mass for specific muscles, and physical function by a treadmill test. We also detected the fiber's diameter and content of sarcomeric proteins. In C2C12 myotubes and/or isolated muscle fibers, we determined the diameter and troponin I level to validate the cellular effect. Moreover, to evaluate possible mechanisms, we detected puromycin incorporation, p70S6K, and 4EBP1 to evaluate protein synthesis and ULK1, LC3 I, and II protein levels to determine autophagic flux. The mitophagosome-like structures were detected by transmission electron microscopy. RESULTS: UDCA induced sarcopenia in healthy mice, evidenced by decreased strength, muscle mass, and physical function, with a decline in the fiber's diameter and the troponin I protein levels. In the C2C12 myotubes, we observed that UDCA caused a reduction in the diameter and content of MHC, troponin I, puromycin incorporation, and phosphorylated forms of p70S6K and 4EBP1. Further, we detected increased levels of phosphorylated ULK1, the LC3II/LC3I ratio, and the number of mitophagosome-like structures. These data suggest that UDCA induces a sarcopenic-like phenotype with decreased protein synthesis and autophagic flux. CONCLUSIONS: Our results indicate that UDCA induces sarcopenia in mice and sarcopenic-like features in C2C12 myotubes and/or isolated muscle fibers concomitantly with decreased protein synthesis and alterations in autophagic flux.


Subject(s)
Animals , Mice , Sarcopenia/chemically induced , Sarcopenia/pathology , Ursodeoxycholic Acid/metabolism , Ursodeoxycholic Acid/pharmacology , Muscle, Skeletal/metabolism , Troponin I/metabolism , Ribosomal Protein S6 Kinases, 70-kDa/metabolism , Mice, Inbred C57BL
2.
Journal of Korean Medical Science ; : S146-S154, 2014.
Article in English | WPRIM | ID: wpr-51697

ABSTRACT

The expression of hypoxia-inducible factor (HIF) is influenced by reactive oxygen species (ROS). Effect of bilirubin on HIF-1 expression in proximal tubular cells was investigated under physiological oxygen concentration, which is relative hypoxic condition mimicking oxygen content in the medulla of renal tissue. The human kidney (HK2) cells were cultured in 5% oxygen with or without bilirubin. HIF-1alpha protein expression was increased by bilirubin treatment at 0.01-0.2 mg/dL concentration. The messenger RNA expression of HIF-1alpha was increased by 1.69+/-0.05 folds in the cells cultured with 0.1 mg/dL bilirubin, compared to the control cells. The inhibitors of PI3K/mTOR, PI3K/AKT, and ERK 1/2 pathways did not attenuate increased HIF-1alpha expression by bilirubin. HIF-1alpha expression decreased by 10 microM exogenous hydrogen peroxide (H2O2); scavenger of ROS with or without bilirubin in the HK2 cells increased HIF-1alpha concentration more than that in the cells without bilirubin. Exogenous H2O2 decreased the phosphorylation of P70S6 kinase, which was completely reversed by bilirubin treatment. Knockdown of NOX4 gene by small interfering RNA (siRNA) increased HIF-1alpha mRNA expression. In coonclusion, bilirubin enhances HIF-1alpha transcription as well as the up-regulation of HIF-1alpha protein translation through the attenuation of ROS and subunits of NADPH oxidase.


Subject(s)
Humans , Bilirubin/pharmacology , Cell Line , Epithelial Cells/cytology , Hydrogen Peroxide/toxicity , Hypoxia-Inducible Factor 1, alpha Subunit/genetics , Kidney Tubules, Proximal/cytology , Mitogen-Activated Protein Kinase 1/metabolism , Mitogen-Activated Protein Kinase 3/metabolism , NADPH Oxidases/antagonists & inhibitors , Oxygen/pharmacology , Phosphatidylinositol 3-Kinases/metabolism , Phosphorylation/drug effects , Proto-Oncogene Proteins c-akt/metabolism , RNA Interference , Ribosomal Protein S6 Kinases, 70-kDa/metabolism , Signal Transduction/drug effects , TOR Serine-Threonine Kinases/metabolism , Transcriptional Activation/drug effects , Up-Regulation/drug effects
3.
Experimental & Molecular Medicine ; : 456-464, 2010.
Article in English | WPRIM | ID: wpr-27757

ABSTRACT

As glucose is known to induce insulin secretion in pancreatic beta cells, this study investigated the role of a phospholipase D (PLD)-related signaling pathway in insulin secretion caused by high glucose in the pancreatic beta-cell line MIN6N8. It was found that the PLD activity and PLD1 expression were both increased by high glucose (33.3 mM) treatment. The dominant negative PLD1 inhibited glucose-induced Beta2 expression, and glucose-induced insulin secretion was blocked by treatment with 1-butanol or PLD1-siRNA. These results suggest that high glucose increased insulin secretion through a PLD1-related pathway. High glucose induced the binding of Arf6 to PLD1. Pretreatment with brefeldin A (BFA), an Arf inhibitor, decreased the PLD activity as well as the insulin secretion. Furthermore, BFA blocked the glucose-induced mTOR and p70S6K activation, while mTOR inhibition with rapamycin attenuated the glucose induced Beta2 expression and insulin secretion. Thus, when taken together, PLD1 would appear to be an important regulator of glucose-induced insulin secretion through an Arf6/PLD1/mTOR/p70S6K/Beta2 pathway in MIN6N8 cells.


Subject(s)
Animals , Mice , ADP-Ribosylation Factors/metabolism , Basic Helix-Loop-Helix Transcription Factors/metabolism , Cells, Cultured , Gene Expression Regulation, Enzymologic/drug effects , Glucose/pharmacology , Insulin/metabolism , Insulin-Secreting Cells/drug effects , Intracellular Signaling Peptides and Proteins/metabolism , Models, Biological , Oligodeoxyribonucleotides, Antisense/pharmacology , Phospholipase D/antagonists & inhibitors , Protein Serine-Threonine Kinases/metabolism , Ribosomal Protein S6 Kinases, 70-kDa/metabolism , Signal Transduction/drug effects
4.
Yonsei Medical Journal ; : 592-600, 2008.
Article in English | WPRIM | ID: wpr-167115

ABSTRACT

PURPOSE: Thiazolidinediones (TZDs) are known to inhibit the proliferation of vascular smooth muscle cell (VSMC) by increasing the activity of p27(Kip1) and retinoblastoma protein (RB). However, the upstream signaling mechanisms associated with this pathway have not been elucidated. The Akt-mTOR-P70S6 kinase pathway is the central regulator of cell growth and proliferation, and increases cell proliferation by inhibiting the activities of p27(Kip1) and retinoblastoma protein (RB). Therefore, we hypothesized in this study that rosiglitazone inhibits VSMC proliferation through the inhibition of the Akt-TOR-P70S6K signaling pathway. MATERIALS and METHODS: Rat aortic smooth muscle cells (RAoSMCs) were treated with 10microM of rosiglitazone 24 hours before the addition of insulin as a mitogenic stimulus. Western blot analysis was performed to determine the inhibitory effect of rosiglitazone treatment on the Akt-mTOR-P70S6K signaling pathway. Carotid balloon injury was also performed in Otsuka Long-Evans Tokushima Fatty (OLETF) diabetic rats that were pretreated with 3 mg/kg of rosiglitazone. RESULTS: Western blot analysis demonstrated significant inhibition of activation of p-Akt, p-m-TOR, and p-p70S6K in cells treated with rosiglitazone. The inhibition of the activation of the p-mTOR-p-p70S6K pathway seemed to be mediated by both the upstream PI3K pathway and MEK-ERK complex. CONCLUSION: The inhibitory effect of rosiglitazone on RAoSMC proliferation in vitro and in vivo is mediated by the inhibition of the Akt-mTOR-P70S6K pathway.


Subject(s)
Animals , Male , Rats , Cell Proliferation/drug effects , Cells, Cultured , Cytoprotection/drug effects , Enzyme Activation/drug effects , Insulin/pharmacology , Mitogen-Activated Protein Kinase Kinases/antagonists & inhibitors , Muscle, Smooth, Vascular/drug effects , Myocytes, Smooth Muscle/drug effects , Phosphorylation , Protein Kinase Inhibitors/pharmacology , Protein Kinases/metabolism , Proto-Oncogene Proteins c-akt/antagonists & inhibitors , Ribosomal Protein S6 Kinases, 70-kDa/metabolism , Signal Transduction/drug effects , Thiazolidinediones/pharmacology
SELECTION OF CITATIONS
SEARCH DETAIL