Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 15 de 15
Filter
1.
Int. j. morphol ; 42(3): 594-600, jun. 2024. ilus
Article in English | LILACS | ID: biblio-1564636

ABSTRACT

SUMMARY: Hypoxic preconditioning is known to induce neuroprotection, but its effects and pathways in chronic brain pathology still unknown. The aim was to establish an involvement of a7 subunit of nicotinic acetylcholine receptors (a7nAchRs), and sirtuins of 1 (SIRT1) and 3 (SIRT3) types in the effects of hypoxic hypobaric preconditioning on brain damage in mice with chronic cerebral hypoperfusion caused by the left common carotid artery occlusion. The male C57/6j (C57, wild type) and a7nAchRs(-/-) mice were divided to six experimental groups (10 mice per group): sham-operated C57, C57 with chronic cerebral hypoperfusion, C57 with hypoxic hypobaric preconditioning and chronic cerebral hypoperfusion, sham-operated a7nAchRs(-/-) mice, a7nAchRs(-/-) with chronic cerebral hypoperfusion, a7nAchRs(-/-) with hypoxic hypobaric preconditioning and chronic cerebral hypoperfusion. For preconditioning, mice were exposed to hypoxia by "lifting" in barochamber to simulated altitude of 5600 m a.s.l. for 1 h/day on 3 consecutive days before surgical manipulation. Expressions of SIRT1, SIRT3 in brain tissue, and histopathological changes of the hippocampi were examined. It was shown that 8-week chronic hypoperfusion of the brain, caused by unilateral occlusion of the common carotid artery, was accompanied by injury to the neurons of the hippocampi of both hemispheres, which was more pronounced on the side of the occlusion. This damage, as well as the mechanisms of neuroprotection induced by hypoxic preconditioning, were maintained for at least 8 weeks by mechanisms mediated through a7nAChRs. Deficite of a7nAChRs was accompanied with reduction of neuronal damage caused CCH in 8 weeks, as well as preconditioning effects, and lead to compensatory activation of regulatory and protective mechanisms mediated by SIRT1, in normal conditions and in CCH. In wild-type (C57) mice, protective mechanisms in CCH were realized to a greater extent by increased expression of SIRT3 in both hemispheres of the brain.


Se sabe que el precondicionamiento hipóxico induce neuroprotección, pero aún se desconocen sus efectos y vías en la patología cerebral crónica. El objetivo fue establecer la participación de la subunidad a7 de los receptores nicotínicos de acetilcolina (a7nAchR) y las sirtuinas de tipo 1 (SIRT1) y 3 (SIRT3) en los efectos del precondicionamiento hipóxico hipobárico sobre el daño cerebral en ratones con hipoperfusión cerebral crónica causada por la oclusión de la arteria carótida común izquierda. Los ratones macho C57/6j (C57, tipo salvaje) y a7nAchRs(-/-) se dividieron en seis grupos experimentales (10 ratones por grupo): C57 con operación simulada, C57 con hipoperfusión cerebral crónica, C57 con precondicionamiento hipobárico hipóxico y crónica. hipoperfusión cerebral, ratones a7nAchRs(-/-) operados de forma simulada, a7nAchRs(-/-) con hipoperfusión cerebral crónica, a7nAchRs(-/-) con precondicionamiento hipobárico hipóxico e hipoperfusión cerebral crónica. Para el preacondicionamiento, los ratones fueron expuestos a hipoxia "levantándolos" en una cámara de barro a una altitud simulada de 5600 m s.n.m. durante 1 h/día durante 3 días consecutivos antes de la manipulación quirúrgica. Se examinaron las expresiones de SIRT1, SIRT3 en tejido cerebral y los cambios histopatológicos de los hipocampos. Se demostró que la hipoperfusión cerebral crónica de 8 semanas, causada por la oclusión unilateral de la arteria carótida común, se acompañaba de lesión de las neuronas del hipocampo de ambos hemisferios y que era más pronunciada en el lado de la oclusión. Este daño, así como los mecanismos de neuroprotección inducidos por el precondicionamiento hipóxico, se mantuvieron durante al menos 8 semanas mediante mecanismos mediados por a7nAChR. El déficit de a7nAChR se acompañó de una reducción del daño neuronal causado por CCH en 8 semanas, así como de efectos de precondicionamiento, y condujo a una activación compensatoria de mecanismos reguladores y protectores mediados por SIRT1, en condiciones normales y en CCH. En ratones de tipo salvaje (C57), los mecanismos de protección en CCH se realizaron en mayor medida mediante una mayor expresión de SIRT3 en ambos hemisfe- rios del cerebro.


Subject(s)
Animals , Mice , Brain Ischemia , Sirtuin 1/metabolism , Sirtuin 3/metabolism , alpha7 Nicotinic Acetylcholine Receptor/metabolism , Hypoxia , Cerebrovascular Circulation , Blotting, Western , Carotid Stenosis
2.
Zhongguo Zhong Yao Za Zhi ; (24): 1770-1778, 2023.
Article in Chinese | WPRIM | ID: wpr-981394

ABSTRACT

To investigate the effect of Huazhi Rougan Granules(HZRG) on autophagy in a steatotic hepatocyte model of free fatty acid(FFA)-induced nonalcoholic fatty liver disease(NAFLD) and explore the possible mechanism. FFA solution prepared by mixing palmitic acid(PA) and oleic acid(OA) at the ratio of 1∶2 was used to induce hepatic steatosis in L02 cells after 24 h treatment, and an in vitro NAFLD cell model was established. After termination of incubation, cell counting kit-8(CCK-8) assay was performed to detect the cell viability; Oil red O staining was employed to detect the intracellular lipid accumulation; enzyme-linked immunosorbnent assay(ELISA) was performed to measure the level of triglyceride(TG); to monitor autophagy in L02 cells, transmission electron microscopy(TEM) was used to observe the autophagosomes; LysoBrite Red was used to detect the pH change in lysosome; transfection with mRFP-GFP-LC3 adenovirus was conducted to observe the autophagic flux; Western blot was performed to determine the expression of autophagy marker LC3B-Ⅰ/LC3B-Ⅱ, autophagy substrate p62 and silent information regulator 1(SIRT1)/adenosine 5'-monophosphate(AMP)-activated protein kinase(AMPK) signaling pathway. NAFLD cell model was successfully induced by FFA at 0.2 mmol·L~(-1) PA and 0.4 mmol·L~(-1) OA. HZRG reduced the TG level(P<0.05, P<0.01) and the lipid accumulation of FFA-induced L02 cells, while elevated the number of autophagosomes and autophagolysosomes to generate autophagic flux. It also affected the functions of lysosomes by regulating their pH. Additionally, HZRG up-regulated the expression of LC3B-Ⅱ/LC3B-Ⅰ, SIRT1, p-AMPK and phospho-protein kinase A(p-PKA)(P<0.05, P<0.01), while down-regulated the expression of p62(P<0.01). Furthermore, 3-methyladenine(3-MA) or chloroquine(CQ) treatment obviously inhibited the above effects of HZRG. HZRG prevented FFA-induced steatosis in L02 cells, and its mechanism might be related to promoting autophagy and regulating SIRT1/AMPK signaling pathway.


Subject(s)
Humans , Non-alcoholic Fatty Liver Disease/metabolism , Sirtuin 1/metabolism , AMP-Activated Protein Kinases/metabolism , Fatty Acids, Nonesterified/metabolism , Autophagy , Liver
3.
Chinese Critical Care Medicine ; (12): 598-603, 2023.
Article in Chinese | WPRIM | ID: wpr-982639

ABSTRACT

OBJECTIVE@#To investigate the role and mechanism of silent information regulator 1 (SIRT1) in regulating nuclear factor E2-related factor 2 (Nrf2)/heme oxygenase-1 (HO-1) signaling pathway in oxidative stress and inflammatory response to sepsis-induced liver injury.@*METHODS@#A total of 24 male Sprague-Dawley (SD) rats were randomly divided into sham operation (Sham) group, cecal ligation and puncture (CLP) group, SIRT1 agonist SRT1720 pretreatment (CLP+SRT1720) group and SIRT1 inhibitor EX527 pretreatment (CLP+EX527) group, with 6 rats in each group. Two hours before operation, SRT1720 (10 mg/kg) or EX527 (10 mg/kg) were intraperitoneally injected into the CLP+SRT1720 group and CLP+EX527 group, respectively. Blood was collected from the abdominal aorta at 24 hours after modeling and the rats were sacrificed for liver tissue. The serum levels of interleukins (IL-6, IL-1β) and tumor necrosis factor-α (TNF-α) were detected by enzyme-linked immunosorbent assay (ELISA). The serum levels of alanine aminotransferase (ALT) and aspartate aminotransferase (AST) were detected by microplate method. Hematoxylin-eosin (HE) staining was used to observe the pathological injury of rats in each group. The levels of malondialdehyde (MDA), 8-hydroxydeoxyguanosine (8-OHdG), glutathione (GSH) and superoxide dismutase (SOD) in liver tissue were detected by corresponding kits. The mRNA and protein expressions of SIRT1, Nrf2 and HO-1 in liver tissues were detected by real-time quantitative polymerase chain reaction (RT-qPCR) and Western blotting.@*RESULTS@#Compared with the Sham group, the serum levels of IL-6, IL-1β, TNF-α, ALT and AST in the CLP group were significantly increased; histopathological results showed that liver cords were disordered, hepatocytes were swollen and necrotic, and a large number of inflammatory cells infiltrated; the contents of MDA and 8-OHdG in liver tissue increased, while the contents of GSH and SOD decreased; and the mRNA and protein expressions of SIRT1, Nrf2 and HO-1 in liver tissues were significantly decreased. These results suggest that sepsis rats have liver dysfunction, and the levels of SIRT1, Nrf2, HO-1 and antioxidant protein in liver tissues were decreased, while the levels of oxidative stress and inflammation were increased. Compared with the CLP group, the levels of inflammatory factors and oxidative stress were significantly decreased in the CLP+SRT1720 group, the mRNA and protein expressions of SIRT1, Nrf2 and HO-1 were significantly increased [IL-6 (ng/L): 34.59±4.21 vs. 61.84±3.78, IL-1β (ng/L): 41.37±2.70 vs. 72.06±3.14, TNF-α (ng/L): 76.43±5.23 vs. 130.85±5.30, ALT (U/L): 30.71±3.63 vs. 64.23±4.59, AST (U/L): 94.57±6.08 vs. 145.15±6.86, MDA (μmol/g): 6.11±0.28 vs. 9.23±0.29, 8-OHdG (ng/L): 117.43±10.38 vs. 242.37±11.71, GSH (μmol/g): 11.93±0.88 vs. 7.66±0.47, SOD (kU/g): 121.58±5.05 vs. 83.57±4.84, SIRT1 mRNA (2-ΔΔCt): 1.20±0.13 vs. 0.46±0.02, Nrf2 mRNA (2-ΔΔCt): 1.21±0.12 vs. 0.58±0.03, HO-1 mRNA (2-ΔΔCt): 1.71±0.06 vs. 0.48±0.07, SIRT1 protein (SIRT1/β-actin): 0.89±0.04 vs. 0.58±0.03, Nrf2 protein (Nrf2/β-actin): 0.87±0.08 vs. 0.51±0.09, HO-1 protein (HO-1/β-actin): 0.93±0.14 vs. 0.54±0.12, all P < 0.05], these results indicated that SIRT1 agonist SRT1720 pretreatment could improve liver injury in sepsis rats. However, pretreatment with SIRT1 inhibitor EX527 showed the opposite effect [IL-6 (ng/L): 81.05±6.47 vs. 61.84±3.78, IL-1β (ng/L): 93.89±5.83 vs. 72.06±3.14, TNF-α (ng/L): 177.67±5.12 vs. 130.85±5.30, ALT (U/L): 89.33±9.52 vs. 64.23±4.59, AST (U/L): 179.59±6.44 vs. 145.15±6.86, MDA (μmol/g): 11.39±0.51 vs. 9.23±0.29, 8-OHdG (ng/L): 328.83±11.26 vs. 242.37±11.71, GSH (μmol/g): 5.07±0.34 vs. 7.66±0.47, SOD (kU/g): 59.37±4.28 vs. 83.57±4.84, SIRT1 mRNA (2-ΔΔCt): 0.34±0.03 vs. 0.46±0.02, Nrf2 mRNA (2-ΔΔCt): 0.46±0.04 vs. 0.58±0.03, HO-1 mRNA (2-ΔΔCt): 0.21±0.03 vs. 0.48±0.07, SIRT1 protein (SIRT1/β-actin): 0.47±0.04 vs. 0.58±0.03, Nrf2 protein (Nrf2/β-actin): 0.32±0.07 vs. 0.51±0.09, HO-1 protein (HO-1/β-actin): 0.19±0.09 vs. 0.54±0.12, all P < 0.05].@*CONCLUSIONS@#SIRT1 can inhibit the release of proinflammatory factors and alleviate the oxidative damage of hepatocytes by activating Nrf2/HO-1 signaling pathway, thus playing a protective role against CLP-induced liver injury.


Subject(s)
Animals , Male , Rats , Actins/metabolism , Chemical and Drug Induced Liver Injury, Chronic , Heme Oxygenase-1/metabolism , Interleukin-6 , NF-E2-Related Factor 2/metabolism , Rats, Sprague-Dawley , RNA, Messenger , Sepsis/metabolism , Signal Transduction , Sirtuin 1/metabolism , Superoxide Dismutase/metabolism , Tumor Necrosis Factor-alpha/metabolism
4.
Chin. j. integr. med ; Chin. j. integr. med;(12): 1121-1132, 2023.
Article in English | WPRIM | ID: wpr-1010316

ABSTRACT

OBJECTIVE@#To interpret the pharmacology of quercetin in treatment of atherosclerosis (AS).@*METHODS@#Fourteen apolipoprotein E-deficient (ApoE-/-) mice were divided into 2 groups by a random number table: an AS model (ApoE-/-) group and a quercetin treatment group (7 in each). Seven age-matched C57 mice were used as controls (n=7). Quercetin [20 mg/(kg·d)] was administered to the quercetin group intragastrically for 8 weeks for pharmacodynamic evaluation. Besides morphological observation, the distribution of CD11b, F4/80, sirtuin 1 (Sirt1) and P21 was assayed by immunohistochemistry and immunofluorescence to evaluate macrophage infiltration and tissue senescence. Ultra-performance liquid chromatography/tandem mass spectrometry (UPLC-MSC/MS) was performed to study the pharmacology of quercetin against AS. Then, simultaneous administration of an apelin receptor antagonist (ML221) with quercetin was conducted to verify the possible targets of quercetin. Key proteins in apelin signaling pathway, such as angiotensin domain type 1 receptor-associated proteins (APJ), AMP-activated protein kinase (AMPK), peroxisome proliferator-activated receptor-γ coactivator-1α (PGC-1α), tissue plasminogen activator (TPA), uncoupling protein 1 (UCP1) and angiotensin II receptor 1 (AT1R), were assayed by Western blot.@*RESULTS@#Quercetin administration decreased lipid deposition in arterial lumen and improved the morphology of ApoE-/- aortas in vivo. Quercetin decreased the densities of CD11b, F4/80 and P21 in the aorta and increased the level of serum apelin and the densities of APJ and Sirt1 in the aorta in ApoE-/- mice (all P<0.05). Plasma metabolite profiling identified 118 differential metabolites and showed that quercetin affected mainly glycerophospholipids and fatty acyls. Bioinformatics analysis suggested that the apelin signaling pathway was one of the main pathways. Quercetin treatment increased the protein expressions of APJ, AMPK, PGC-1α, TPA and UCP1, while decreased the AT1R level (all P<0.05). After the apelin pathway was blocked by ML221, the effect of quercetin was abated significantly, confirming that quercetin attenuated AS by modulating the apelin signaling pathway (all P<0.05).@*CONCLUSION@#Quercetin alleviated AS lesions by up-regulation the apelin signaling pathway.


Subject(s)
Mice , Animals , Apelin , Tissue Plasminogen Activator/metabolism , Quercetin/therapeutic use , AMP-Activated Protein Kinases/metabolism , Sirtuin 1/metabolism , Signal Transduction/physiology , Atherosclerosis/metabolism , Apolipoproteins E
5.
Biomed. environ. sci ; Biomed. environ. sci;(12): 1045-1058, 2023.
Article in English | WPRIM | ID: wpr-1007880

ABSTRACT

OBJECTIVE@#In this study, the combined effect of two stressors, namely, electromagnetic fields (EMFs) from mobile phones and fructose consumption, on hypothalamic and hepatic master metabolic regulators of the AMPK/SIRT1-UCP2/FOXO1 pathway were elucidated to delineate the underlying molecular mechanisms of insulin resistance.@*METHODS@#Weaned Wistar rats (28 days old) were divided into 4 groups: Normal, Exposure Only (ExpO), Fructose Only (FruO), and Exposure and Fructose (EF). Each group was provided standard laboratory chow ad libitum for 8 weeks . Additionally, the control groups, namely, the Normal and FruO groups, had unrestricted access to drinking water and fructose solution (15%), respectively. Furthermore, the respective treatment groups, namely, the ExpO and EF groups, received EMF exposure (1,760 MHz, 2 h/day x 8 weeks). In early adulthood, mitochondrial function, insulin receptor signaling, and oxidative stress signals in hypothalamic and hepatic tissues were assessed using western blotting and biochemical analysis.@*RESULT@#In the hypothalamic tissue of EF, SIRT1, FOXO 1, p-PI3K, p-AKT, Complex III, UCP2, MnSOD, and catalase expressions and OXPHOS and GSH activities were significantly decreased ( P < 0.05) compared to the Normal, ExpO, and FruO groups. In hepatic tissue of EF, the p-AMPKα, SIRT1, FOXO1, IRS1, p-PI3K, Complex I, II, III, IV, V, UCP2, and MnSOD expressions and the activity of OXPHOS, SOD, catalase, and GSH were significantly reduced compared to the Normal group ( P < 0.05).@*CONCLUSION@#The findings suggest that the combination of EMF exposure and fructose consumption during childhood and adolescence in Wistar rats disrupts the closely interlinked and multi-regulated crosstalk of insulin receptor signals, mitochondrial OXPHOS, and the antioxidant defense system in the hypothalamus and liver.


Subject(s)
Humans , Rats , Animals , Adult , Rats, Wistar , Fructose/metabolism , Catalase , Receptor, Insulin/metabolism , AMP-Activated Protein Kinases/metabolism , Electromagnetic Fields/adverse effects , Sirtuin 1/metabolism , Cell Phone , Phosphatidylinositol 3-Kinases/metabolism , Forkhead Box Protein O1/metabolism , Uncoupling Protein 2
6.
Zhongguo Zhong Yao Za Zhi ; (24): 5032-5040, 2023.
Article in Chinese | WPRIM | ID: wpr-1008673

ABSTRACT

This study aimed to explore the possible effect of Xixin Decoction(XXD) on the learning and memory ability of Alzheimer's disease(AD) model senescence-accelerated mouse-prone 8(SAMP8) and the related mechanism in enhancing neuroprotective effect and reducing neuroinflammation. Forty SAMP8 were randomly divided into a model group(10 mL·kg~(-1)·d~(-1)), a probiotics group(0.39 g·kg~(-1)·d~(-1)), a high-dose group of XXD granules(H-XXD, 5.07 g·kg~(-1)·d~(-1)), a medium-dose group of XXD granules(M-XXD, 2.535 g·kg~(-1)·d~(-1)), and a low-dose group of XXD granules(L-XXD, 1.267 5 g·kg~(-1)·d~(-1)). Eight senescence-accelerated mouse-resistant 1(SAMR1) of the same age and strain were assigned to the control group(10 mL·kg~(-1)·d~(-1)). After ten weeks of intragastric administration, the Morris water maze was used to test the changes in spatial learning and memory ability of mice after treatment. Meanwhile, immunofluorescence staining was used to detect the positive expression of receptor for advanced glycation end products(AGER), Toll-like receptor 1(TLR1), and Toll-like receptor 2(TLR2) in the hippocampal CA1 region of mice. Western blot was employed to test the protein expression levels of silencing information regulator 2 related enzyme 1(SIRT1), AGER, TLR1, and TLR2 in the hippocampus of mice. Enzyme linked immunosorbent assay(ELISA) was applied to assess the levels of Aβ_(1-42) in the hippocampus of mice and the levels of nuclear factor κB p65(NF-κB p65), NOD-like receptor protein 3(NLRP3), tumor necrosis factor-α(TNF-α), and interleukin-1β(IL-1β) in the serum and hippocampus of mice. Compared with the model group, XXD significantly improved the spatial learning and memory ability of SAMP8, increased the expression of neuroprotective factors in the hippocampus, decreased the levels of neuroinflammatory factors, and inhibited the expression of Aβ_(1-42). In particular, H-XXD significantly increased the expression of SIRT1 in the hippocampus of mice, reduced the expression levels of NF-κB p65, NLRP3, TNF-α, and IL-1β in the serum and hippocampus of mice, and decreased the expression of AGER, TLR1, and TLR2 in the hippocampus of mice(P<0.05 or P<0.01). XXD may improve the spatial learning and memory ability of AD model SAMP8 by enhancing the neuroprotective effect and inhibiting neuroinflammation.


Subject(s)
Humans , Neuroprotective Agents/therapeutic use , Sirtuin 1/metabolism , Toll-Like Receptor 2/metabolism , NF-kappa B/metabolism , Tumor Necrosis Factor-alpha/metabolism , Neuroinflammatory Diseases , NLR Family, Pyrin Domain-Containing 3 Protein/metabolism , Toll-Like Receptor 1/metabolism , Alzheimer Disease/genetics , Hippocampus
7.
Article in English | WPRIM | ID: wpr-929001

ABSTRACT

OBJECTIVES@#Perfluorooctanoic acid (PFOA) can cause lipid metabolism disorders in animal body and affect the lipolysis and synthesis of fatty acids. Peroxisome proliferators-activated receptor (PPAR) plays an extremely important role in this process. This study aims to explore the effects of PFOA on liver lipid metabolism disorders in Sprague Dewley (SD) rats and the expression of PPAR.@*METHODS@#A total of 40 male SD rats were randomly divided into 4 groups (n=10 in each group): a control group (ddH2O), a low-dose PFOA group [PFOA 1.25 mg/(kg·d)], a middle-dose PFOA group [PFOA 5.00 mg/(kg·d)], and a high-dose PFOA group [PFOA 20.00 mg/(kg·d)]. The rats were fed with normal diet, and PFOA exposure were performed by oral gavage for 14 days, and the rats were observed, weighted and recorded every day during the exposure. After the exposure, the blood was collected, and the livers were quickly stripped after the rats were killed. Part of the liver tissues were fixed in 4% paraformaldehyde for periodic acid-schiff (PAS) staining; the contents of HDLC, LDLC, TG, TC in serum and liver tissues, as well as the activities of their related enzymes were assayed; The expression levels of cyclic adenosine monophosphate-response element binding protein (Cbp), general control of amino acid synthesis 5-like 2 (Gcn5L2), peroxidation peroxisome proliferation factor activated receptor γ (PPAR), silent information regulator 1 (Sirt1) and human retinoid X receptor alpha 2 (Rxrα2) ) were detected by Western blotting.@*RESULTS@#After 14 days of PFOA exposure, the PAS staining positive particles in the cytoplasm and nucleus of SD rats in the medium and high dose groups were significantly reduced compared with the control group. The serum levels of LDLC and TC in the low-dose and middle-dose groups were significantly reduced compared with the control group (all P<0.05), while the high-dose group showed an increasing tendency, without siginificant difference (P>0.05), there was no significant difference in HDLC and TG (both P>0.05). The activities of alkaline phosphatase (AKP) and alanine aminotransferase (ALT) were increased significantly (both P<0.05) compared with control group; the ratio of ALT/aspartate aminotransferase (AST) in the high-dose group was increased significantly (P<0.05), there was no significant difference in LDH and TG (both P>0.05); the HDLC content in the liver tissues in the high-dose group was significantly reduced, compared with the control group (P<0.05); the TC contents in the liver tissues in the low, medium and high-dose groups were significantly increased (all P<0.05), there was no significant difference in LDLC and TG (both P>0.05); the AKP activity in the livers in the medium and high-dose groups was significantly increased (both P<0.05), there was no siginificant difference in LDH, ALT, and the ratio of ALT/AST (all P>0.05); the protein expression levels of Ppar γ, Cbp and Rxrα2 in the liver in the high dose groups were significantly down-regulated compared with the control group (all P<0.05), while the protein expression levels of Sirt1 were significantly up-regulated (all P<0.05).@*CONCLUSIONS@#PFOA exposure can cause lipid metabolism disorder and glycogen reduction in SD rat livers, which may be related to the activation of Sirt1 and inhibition of Ppar γ expression, leading to affecting the normal metabolism of fatty acids and promoting glycolysis.


Subject(s)
Animals , Male , Rats , Caprylates , Fatty Acids/pharmacology , Fluorocarbons , Lipid Metabolism , Lipid Metabolism Disorders/metabolism , Liver/metabolism , PPAR gamma , Rats, Sprague-Dawley , Sirtuin 1/metabolism
8.
Article in Chinese | WPRIM | ID: wpr-936289

ABSTRACT

OBJECTIVE@#To investigate the protective effect against intestinal mucosal injury in rats following traumatic brain injury (TBI) and explore the underlying mechanism.@*METHODS@#SD rat models of TBI were established by fluid percussion injury (FPI), and the specimens were collected at 12, 24, 48, and 72 h after TBI. Another 15 rats were randomly divided into shamoperated group (n=5), TBI with saline treatment (TBI+NS) group (n=5), and TBI with PD treatment (TBI+PD) group (treated with 30 mg/kg PD after TBI; n=5). Body weight gain and fecal water content of the rats were recorded, and after the treatments, the histopathology of the jejunum was observed, and the levels of D-lactic acid (D-LAC), diamine oxidase (DAO), ZO-1, claudin-5, and reactive oxygen species (ROS) were detected. Lipid peroxide (LPO) and superoxide dismutase (SOD) 2 content, jejunal pro-inflammatory factors (IL-6, IL-1β, and TNF- α), Sirt1 activity, SOD2 and HMGB1 acetylation level were also determined after the treatments.@*RESULTS@#The rats showed significantly decreased body weight and fecal water content and progressively increased serum levels of D-LAC and DAO after TBI (P < 0.05) with obvious jejunal injury, significantly decreased expression levels of ZO-1 and claudin-5, lowered SOD2 and Sirt1 activity (P < 0.05), increased expression levels of LPO, ROS, and pro-inflammatory cytokines, and enhanced SOD2 and HMGB1 acetylation levels (P < 0.05). Compared with TBI+NS group, the rats in TBI+PD group showed obvious body weight regain, increased fecal water content, reduced jejunal pathologies, decreased D-LAC and DAO levels (P < 0.05), increased ZO-1, claudin-5, SOD2 expression levels and Sirt1 activity, and significantly decreased ROS, LPO, pro-inflammatory cytokines, and acetylation levels of SOD2 and HMGB1 (P < 0.05).@*CONCLUSION@#PD alleviates oxidative stress and inflammatory response by activating Sirt1-mediated deacetylation of SOD2 and HMGB1 to improve intestinal mucosal injury in TBI rats.


Subject(s)
Animals , Rats , Brain Injuries, Traumatic , Glucosides/pharmacology , HMGB1 Protein/metabolism , Oxidative Stress , Rats, Sprague-Dawley , Sirtuin 1/metabolism , Stilbenes/pharmacology , Superoxide Dismutase/metabolism
9.
Article in Chinese | WPRIM | ID: wpr-936338

ABSTRACT

OBJECTIVE@#To investigate the effects of wogonoside on high glucose-induced dysfunction of human retinal microvascular endothelial cells (hRMECs) and streptozotocin (STZ)-induced diabetic retinopathy in rats and explore the underlying molecular mechanism.@*METHODS@#HRMECs in routine culture were treated with 25 mmol/L mannitol or exposed to high glucose (30 mmol/L glucose) and treatment with 10, 20, 30, 40 μmol/L wogonoside. CCK-8 assay and Transwell assay were used to examine cell proliferation and migration, and the changes in tube formation and monolayer cell membrane permeability were tested. ROS, NO and GSH-ST kits were used to evaluate oxidative stress levels in the cells. The expressions of IL-1β and IL-6 in the cells were examined with qRT-PCR and ELISA, and the protein expressions of VEGF, HIF-1α and SIRT1 were detected using Western blotting. We also tested the effect of wogonoside on retinal injury and expressions of HIF-1α, ROS, VEGF, TNF-α, IL-1β, IL-6 and SIRT1 proteins in rat models of STZ-induced diabetic retinopathy.@*RESULTS@#High glucose exposure caused abnormal proliferation and migration, promoted angiogenesis, increased membrane permeability (P < 0.05), and induced inflammation and oxidative stress in hRMECs (P < 0.05). Wogonoside treatment concentration-dependently inhibited high glucose-induced changes in hRMECs. High glucose exposure significantly lowered the expression of SIRT1 in hRMECs, which was partially reversed by wogonoside (30 μmol/L) treatment; interference of SIRT1 obviously attenuated the inhibitory effects of wogonoside against high glucose-induced changes in proliferation, migration, angiogenesis, membrane permeability, inflammation and oxidative stress in hRMECs. In rat models of STZ-induced diabetic retinopathy, wogonoside effectively suppressed retinal thickening (P < 0.05), alleviated STZ-induced retinal injury, and increased the expression of SIRT1 in the retinal tissues (P < 0.001).@*CONCLUSION@#Wogonoside alleviates retinal damage caused by diabetic retinopathy by up-regulating SIRT1 expression.


Subject(s)
Animals , Rats , Diabetes Mellitus/metabolism , Diabetic Retinopathy/metabolism , Endothelial Cells , Flavanones , Glucose/pharmacology , Glucosides , Inflammation/metabolism , Interleukin-6/metabolism , Neovascularization, Pathologic/metabolism , Reactive Oxygen Species/metabolism , Sirtuin 1/metabolism , Streptozocin/pharmacology , Vascular Endothelial Growth Factor A/metabolism
10.
Biol. Res ; 55: 14-14, 2022. ilus
Article in English | LILACS | ID: biblio-1383916

ABSTRACT

BACKGROUND: Diabetic retinopathy (DR) is a specific microvascular complication arising from diabetes, and its pathogenesis is not completely understood. tRNA-derived stress-induced RNAs (tiRNAs), a new type of small noncoding RNA generated by specific cleavage of tRNAs, has become a promising target for several diseases. However, the regulatory function of tiRNAs in DR and its detailed mechanism remain unknown. RESULTS: Here, we analyzed the tiRNA profiles of normal and DR retinal tissues. The expression level of tiRNA-Val was significantly upregulated in DR retinal tissues. Consistently, tiRNA-Val was upregulated in human retinal microvascular endothelial cells (HRMECs) under high glucose conditions. The overexpression of tiRNA-Val enhanced cell proliferation and inhibited cell apoptosis in HRMECs, but the knockdown of tiRNA-Val decreased cell proliferation and promoted cell apoptosis. Mechanistically, tiRNA-Val, derived from mature tRNA-Val with Ang cleavage, decreased Sirt1 expression level by interacting with sirt1 3'UTR, leading to the accumulation of Hif-1α, a key target for DR. In addition, subretinal injection of adeno-associated virus to knock down tiRNA-Val in DR mice ameliorated the symptoms of DR. CONCLUSION: tiRNA-Val enhance cell proliferation and inhibited cell apoptosis via Sirt1/Hif-1α pathway in HRMECs of DR retinal tissues.


Subject(s)
Animals , Mice , Diabetes Mellitus/genetics , Diabetes Mellitus/metabolism , Diabetes Mellitus/pathology , Diabetic Retinopathy/genetics , Diabetic Retinopathy/metabolism , Diabetic Retinopathy/pathology , Retina/metabolism , Retina/pathology , Endothelial Cells , Sirtuin 1/metabolism , Neovascularization, Pathologic/genetics
11.
Sheng Li Xue Bao ; (6): 828-834, 2021.
Article in Chinese | WPRIM | ID: wpr-921286

ABSTRACT

As a kind of mental illness, depression produces great difficulties in clinical diagnosis and treatment, and has a high disability rate. It is urgent to clarify the mechanism of depression to find potential therapeutic targets and effective clinical treatment methods. As a deacetylase, silent mating type information regulator 2 homolog 1 (SIRT1) is involved in many biological processes such as cell aging, cancer, and cardiovascular disease. In recent years, more and more studies have found that SIRT1 gene plays an important role in the pathogenesis of depression, but the mechanism is still unclear. Therefore, this review mainly summarizes the relevant research progress on the role and mechanism of SIRT1 gene in the hippocampus, prefrontal cortex, amygdala, hypothalamic suprachiasmatic nucleus, and nucleus accumbens in depression, in order to provide new ideas for exploring the mechanism and prevention of depression.


Subject(s)
Humans , Cellular Senescence , Depression/genetics , Hippocampus/metabolism , Nucleus Accumbens , Sirtuin 1/metabolism
12.
Rev. bras. pesqui. méd. biol ; Braz. j. med. biol. res;53(2): e8616, 2020. graf
Article in English | LILACS | ID: biblio-1055497

ABSTRACT

Previous research has shown that suppression of miR-383 can prevent inflammation of the endothelium, as well as postpone the development of atherosclerosis. However, the role of miR-383 in endothelial cell apoptosis in diabetes remains unclear. The aim of this study was to investigate the function of miR-383 in high glucose-induced apoptosis and oxidative stress in endothelial cells. A series of experiments involving qualitative polymerase chain reaction, cell transfection, luciferase assay, assessment of cell death, detection of catalase and superoxide dismutase concentrations, detection of intracellular reactive oxygen species (ROS), and western blot analysis were performed in this study. We found that miR-383 expression was promoted, while NAD+-dependent deacetylase and sirtuin 1 (SIRT1) expressions were suppressed in the endothelium of the aorta in db/db mice as well as in human umbilical vein endothelial cells, which were treated with high glucose (HG). Increased expression of miR-383 decreased expression of SIRT1, while suppression of miR-383 promoted expression of SIRT1 in human umbilical vein endothelial cells (HUVECs). Furthermore, suppression of miR-383 following transfection with miR-383 suppressor repressed cell death and generation of ROS in HUVECs. SIRT1 knockdown by siRNA-SIRT1 reversed the suppressive effect of miR-383 inhibition on ROS production and cell apoptosis induced by HG treatment. Overall, the findings of our research suggested that suppression of miR-383 repressed oxidative stress and reinforced the activity of endothelial cells by upregulation of SIRT1 in db/db mice, and targeting miR-383 might be promising for effective treatment of diabetes.


Subject(s)
Animals , Male , Rabbits , Endothelium, Vascular/drug effects , Apoptosis/drug effects , Oxidative Stress/drug effects , MicroRNAs/antagonists & inhibitors , Sirtuin 1/metabolism , Glucose/pharmacology , Endothelium, Vascular/cytology , Endothelium, Vascular/physiology , Signal Transduction , Cells, Cultured , Mice, Inbred C57BL
13.
Rev. bras. pesqui. méd. biol ; Braz. j. med. biol. res;51(5): e7319, 2018. graf
Article in English | LILACS | ID: biblio-889079

ABSTRACT

MicroRNAs play a crucial role in the progression of spinal cord ischemia/reperfusion injury (SCII). The role of miR-448 and SIRT1 in SCII was investigated in this study, to provide further insights into prevention and improvement of this disorder. In this study, expressions of miR-448 and SIRT1 protein were determined by qRT-PCR and western blot, respectively. Flow cytometry was used to analyze cell apoptosis. The endogenous expression of genes was modulated by recombinant plasmids and cell transfection. Dual-luciferase reporter assay was performed to determine the interaction between miR-448 and SIRT1. The Basso, Beattie, and Bresnahan score was used to measure the hind-limb function of rat. The spinal cord ischemia reperfusion injury model of adult rats was developed by abdominal aorta clamping, and the nerve function evaluation was completed by motor deficit index score. In SCII tissues and cells treated with hypoxia, miR-448 was up-regulated while SIRT1 was down-regulated. Hypoxia treatment reduced the expression of SIRT1 through up-regulating miR-448 in nerve cells. Up-regulation of miR-448 induced by hypoxia promoted apoptosis of nerve cells through down-regulating SIRT1. Down-regulated miR-448 improved neurological function and hind-limb motor function of rats with SCII by up-regulating SIRT1. Down-regulated miR-448 inhibited apoptosis of nerve cells and improved neurological function by up-regulating SIRT1, which contributes to relieving SCII.


Subject(s)
Animals , Male , Rats , Reperfusion Injury/metabolism , Spinal Cord Ischemia/metabolism , MicroRNAs/metabolism , Sirtuin 1/metabolism , Transfection , Reperfusion Injury/physiopathology , Down-Regulation/physiology , Up-Regulation/physiology , Blotting, Western , Rats, Sprague-Dawley , Apoptosis , Reverse Transcriptase Polymerase Chain Reaction , Spinal Cord Ischemia/physiopathology , Disease Models, Animal , Flow Cytometry
14.
Biol. Res ; 50: 27, 2017. graf
Article in English | LILACS | ID: biblio-950878

ABSTRACT

BACKGROUND: miR-22 has been shown to be frequently downregulated and act as a tumor suppressor in multiple cancers including breast cancers. However, the role of miR-22 in regulating the radioresistance of breast cancer cells, as well as its underlying mechanism is still not well understood. METHODS: The expressions of miR-22 and sirt1 at mRNA and protein levels were examined by qRT-PCR and Western Blot. The effects of miR-22 overexpression and sirt1 knockdown on cell viability, apoptosis, radiosensitivity, γ-H2AX foci formation were evaluated by CCK-8 assay, flow cytometry, colony formation assay, and γ-H2AX foci formation assay, respectively. Luciferase reporter assay and qRT-PCR analysis were performed to confirm the interaction between miR-22 and sirt1. RESULTS: miR-22 was downregulated and sirt1 was upregulated at both mRNA and protein levels in breast cancer cells. miR-22 overexpression or sirt1 knockdown significantly suppressed viability, induced apoptosis, reduced survival fraction, and increased the number of γ-H2AX foci in breast cancer cells. Sirt1 was identified as a target of miR-22 and miR-22 negatively regulated sirt1 expression. Ectopic expression of sirt1 dramatically reversed the inhibitory effect of miR-22 on cell viability and promotive effect on apoptotic rates and radiosensitivity in breast cancer cells. CONCLUSIONS: miR-22 suppresses tumorigenesis and improves radiosensitivity of breast cancer cells by targeting sirt1, providing a promising therapeutic target for breast cancer.


Subject(s)
Humans , Female , Radiation Tolerance , Breast Neoplasms/radiotherapy , MicroRNAs/metabolism , Sirtuin 1/metabolism , Radiotherapy Dosage , Breast Neoplasms/metabolism , Histones/metabolism , Down-Regulation , Gene Expression Regulation, Neoplastic , Cell Survival , Apoptosis/genetics , Cell Line, Tumor , Gene Knockdown Techniques , Sirtuin 1/genetics
15.
Rev. méd. Chile ; 143(2): 237-243, feb. 2015. ilus
Article in Spanish | LILACS | ID: lil-742575

ABSTRACT

Currently, there is no discussion on the need to improve and strengthen the institutional health care modality of FONASA (MAI), the health care system used by the public services net and by most of the population, despite the widely known and long lasting problems such as waiting lists, hospital debt with suppliers, lack of specialists and increasing services purchase transference to the private sector, etc. In a dichotomous sectorial context, such as the one of health’s social security in Chile (the state on one side and the market on the other), points of view are polarized and stances tend to seek refuge within themselves. As a consequence, to protect the public solution is commonly associated with protecting the “status quo”, creating an environment that is reluctant to change. The author proposes a solution based on three basic core ideas, which, if proven effective, can strengthen each other if combined properly. These are: network financing management, governance of health care services in MAI and investments and human resources in networked self-managed institutions. The proposal of these core ideas was done introducing a reality testing that minimizes the politic complexity of their implementation.


Subject(s)
Animals , Humans , Rats , AMP-Activated Protein Kinases/metabolism , Antioxidants/therapeutic use , Autophagy/drug effects , Signal Transduction/drug effects , Sirtuin 1/metabolism , Stilbenes/therapeutic use , Cell Line, Transformed , Dose-Response Relationship, Drug , Doxycycline/pharmacology , Gene Expression Regulation/drug effects , Insecticides/toxicity , Microscopy, Immunoelectron/methods , Microtubule-Associated Proteins/genetics , Microtubule-Associated Proteins/metabolism , Mutation/genetics , Poly(ADP-ribose) Polymerases/metabolism , RNA, Small Interfering/pharmacology , Rotenone/toxicity , Time Factors , alpha-Synuclein/genetics , alpha-Synuclein/metabolism
SELECTION OF CITATIONS
SEARCH DETAIL