Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 4 de 4
Filter
Add filters








Language
Year range
1.
Experimental & Molecular Medicine ; : 284-292, 2001.
Article in English | WPRIM | ID: wpr-144630

ABSTRACT

3-Deazaadenosine (DZA), a cellular methylation blocker was reported to induce the caspase-3-like activities-dependent apoptosis in U-937 cells. In this study, we analyzed the activation pathway of the caspase cascade involved in the DZA-induced apoptosis using specific inhibitors of caspases. In the U-937 cells treated with DZA, cytochrome c release from mitochondria and subsequent activation of caspase-9, -8 and -3 were observed before the induction of apoptosis. zDEVD-Fmk, a specific inhibitor of caspase-3, and zLEHD-Fmk, a specific inhibitor of caspase-9, prevented the activation of caspase-8 but neither caspase-3 nor caspase-9, indicating that caspase-8 is downstream of both caspase-3 and caspase-9, which are activated by independent pathways. zVAD-Fmk, a universal inhibitor of caspases, kept the caspase-3 from being activated but not caspase-9. Moreover, ZB4, an antagonistic Fas-antibody, exerted no effect on the activation of caspase-8 and induction of apoptosis by DZA. In addition, zVAD-Fmk and mitochondrial permeability transition pore (MPTP) inhibitors such as cyclosporin A (CsA) and bongkrekic acid (BA) did not block the release of cytochrome c from mitochondria. Taken together, these results suggest that in the DZA-induced apoptosis, caspase-8 may serve as an executioner caspase and be activated downstream of both caspase-3 and caspase-9, independently of Fas receptor-ligand interaction. And caspase-3 seems to be activated by other caspses including IETDase-like enzyme and caspse-9 seems to be activated by cytochrome c released from mitochondria without the involvement of caspases and CsA- and BA- inhibitory MPTP.


Subject(s)
Humans , Amino Acid Chloromethyl Ketones/pharmacology , Apoptosis/drug effects , Bongkrekic Acid/pharmacology , Caspases/metabolism , Cell Line , Cyclosporine/pharmacology , Cytochromes c/drug effects , Enzyme Activation , Leukocytes, Mononuclear/cytology , Ligands , Membrane Glycoproteins/metabolism , Tubercidin/pharmacology , U937 Cells
2.
Experimental & Molecular Medicine ; : 284-292, 2001.
Article in English | WPRIM | ID: wpr-144618

ABSTRACT

3-Deazaadenosine (DZA), a cellular methylation blocker was reported to induce the caspase-3-like activities-dependent apoptosis in U-937 cells. In this study, we analyzed the activation pathway of the caspase cascade involved in the DZA-induced apoptosis using specific inhibitors of caspases. In the U-937 cells treated with DZA, cytochrome c release from mitochondria and subsequent activation of caspase-9, -8 and -3 were observed before the induction of apoptosis. zDEVD-Fmk, a specific inhibitor of caspase-3, and zLEHD-Fmk, a specific inhibitor of caspase-9, prevented the activation of caspase-8 but neither caspase-3 nor caspase-9, indicating that caspase-8 is downstream of both caspase-3 and caspase-9, which are activated by independent pathways. zVAD-Fmk, a universal inhibitor of caspases, kept the caspase-3 from being activated but not caspase-9. Moreover, ZB4, an antagonistic Fas-antibody, exerted no effect on the activation of caspase-8 and induction of apoptosis by DZA. In addition, zVAD-Fmk and mitochondrial permeability transition pore (MPTP) inhibitors such as cyclosporin A (CsA) and bongkrekic acid (BA) did not block the release of cytochrome c from mitochondria. Taken together, these results suggest that in the DZA-induced apoptosis, caspase-8 may serve as an executioner caspase and be activated downstream of both caspase-3 and caspase-9, independently of Fas receptor-ligand interaction. And caspase-3 seems to be activated by other caspses including IETDase-like enzyme and caspse-9 seems to be activated by cytochrome c released from mitochondria without the involvement of caspases and CsA- and BA- inhibitory MPTP.


Subject(s)
Humans , Amino Acid Chloromethyl Ketones/pharmacology , Apoptosis/drug effects , Bongkrekic Acid/pharmacology , Caspases/metabolism , Cell Line , Cyclosporine/pharmacology , Cytochromes c/drug effects , Enzyme Activation , Leukocytes, Mononuclear/cytology , Ligands , Membrane Glycoproteins/metabolism , Tubercidin/pharmacology , U937 Cells
3.
Experimental & Molecular Medicine ; : 197-203, 2000.
Article in English | WPRIM | ID: wpr-25123

ABSTRACT

3-Deazaadenosine (DZA), one of the potent inhibitors of S-adenosylhomocysteine hydrolase, is known to possess several biological properties including an induction of apoptosis. To evaluate a possibility that DZA may be utilized for the treatment of human leukemia, we studied molecular events of cell death induced by DZA in human leukemia HL-60 and U-937 cells. DZA induced a specific cleavage of poly ADP-ribose polymerase (PARP) and an activation of the cysteine protease caspase-3/CPP32 which is known to cleave PARP. DZA-mediated nuclear DNA-fragmentation was completely blocked in the presence of a universal inhibitor of caspases (z-VAD-fmk) or the specific inhibitor of caspase-3 (z-DEVD-fmk) unlike of cycloheximide (CHX). DNA fragmentation was preceded by the lowering of c-myc mRNA in the DZA treated cells. In addition, DZA-induced apoptosis was blocked by pretreatment with adenosine transporter inhibitors such as nitrobenzylthioinosine (NBTI) and dipyridamole (DPD). Taken together, these results demonstrate that DZA-induced apoptosis initiated through an active transport of DZA into human leukemia cells, is dependent on the caspase-3-like activity without de novo synthesis of proteins and possibly involves c-myc down-regulation.


Subject(s)
Humans , Adenosine/metabolism , Apoptosis , Biological Transport, Active , Carrier Proteins/metabolism , Caspases/metabolism , Down-Regulation , Enzyme Activation , Genes, myc , HL-60 Cells , Leukemia, Promyelocytic, Acute/drug therapy , Thioinosine/analogs & derivatives , Transcription Factors/genetics , Tubercidin/pharmacology , U937 Cells
4.
Southeast Asian J Trop Med Public Health ; 1997 Mar; 28(1): 22-31
Article in English | IMSEAR | ID: sea-34071

ABSTRACT

Influx of the purine nucleoside, adenosine, was assessed in erythrocytes from both normal subjects and from subjects with a range of genetically determined erythrocyte disorders from Myanmar. The latter included alpha-thalassemia major (Myanmar variant), beta-thalassemia major (Myanmar variant), beta-thalassemia trait, HbEE and HbAE erythrocytes and two variants of glucose-6-phosphate dehydrogenase (G6PDH) deficiency. Significant reductions (p < 0.01) of adenosine influx were observed in erythrocytes from individuals with alpha- and beta-thalassemia major and severe G6PDH deficiency. Abnormal erythrocytes infected with the malarial parasites, Plasmodium falciparum or Plasmodium vivax, demonstrated a reduction in adenosine transport which correlated with the proportion of abnormal erythrocytes present in the samples obtained. The effect of nitrobenzylthioinosine (NBMPR) on adenosine influx was explored in normal and abnormal erythrocytes. In all these cases, NBMPR completely inhibited the transport of adenosine. However, transport of adenosine into P. falciparum and P. vivax-infected normal erythrocytes and abnormal cells was only inhibited 50-60% by NBMPR. The combination of tubercidin and NBMPR completely blocked adenosine transport into both normal and abnormal erythrocytes infected with either P. falciparum or P. vivax.


Subject(s)
Adenosine/blood , Adult , Affinity Labels/pharmacology , Child , Erythrocytes/metabolism , Erythrocytes, Abnormal/metabolism , Female , Glucosephosphate Dehydrogenase Deficiency/metabolism , Hemoglobinopathies/blood , Humans , Malaria, Falciparum/blood , Malaria, Vivax/blood , Male , Myanmar , Thioinosine/analogs & derivatives , Tubercidin/pharmacology
SELECTION OF CITATIONS
SEARCH DETAIL