Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 20 de 706
Filter
1.
Chinese Journal of Reparative and Reconstructive Surgery ; (12): 74-81, 2024.
Article in Chinese | WPRIM | ID: wpr-1009112

ABSTRACT

OBJECTIVE@#To investigate the effects and underlying mechanisms of VX765 on osteoarthritis (OA) and chondrocytes inflammation in rats.@*METHODS@#Chondrocytes were isolated from the knee joints of 4-week-old Sprague Dawley (SD) rats. The third-generation cells were subjected to cell counting kit 8 (CCK-8) analysis to assess the impact of various concentrations (0, 1, 5, 10, 20, 50, 100 μmol/L) of VX765 on rat chondrocyte activity. An in vitro lipopolysaccharide (LPS) induced cell inflammation model was employed, dividing cells into control group, LPS group, VX765 concentration 1 group and VX765 concentration 2 group without obvious cytotoxicity. Western blot, real-time fluorescence quantitative PCR, and ELISA were conducted to measure the expression levels of inflammatory factors-transforming growth factor β 1 (TGF-β 1), interleukin 6 (IL-6), and tumor necrosis factor α (TNF-α). Additionally, Western blot and immunofluorescence staining were employed to assess the expressions of nuclear factor erythroid 2-related factor 2 (Nrf2) and heme oxygenase 1 (HO-1). Thirty-two SD rats were randomly assigned to sham surgery group (group A), OA group (group B), OA+VX765 (50 mg/kg) group (group C), and OA+VX765 (100 mg/kg) group (group D), with 8 rats in each group. Group A underwent a sham operation with a medial incision, while groups B to D underwent additional transverse incisions to the medial collateral ligament and anterior cruciate ligament, with removal of the medial meniscus. One week post-surgery, groups C and D were orally administered 50 mg/kg and 100 mg/kg VX765, respectively, while groups A and B received an equivalent volume of saline. Histopathological examination using HE and safranin-fast green staining was performed, and Mankin scoring was utilized for evaluation. Immunohistochemical staining technique was employed to analyze the expressions of matrix metalloproteinase 13 (MMP-13) and collagen type Ⅱ.@*RESULTS@#The CCK-8 assay indicated a significant decrease in cell viability at VX765 concentrations exceeding 10 μmol/L ( P<0.05), so 4 μmol/L and 8 μmol/L VX765 without obvious cytotoxicity were selected for subsequent experiments. Following LPS induction, the expressions of TGF-β 1, IL-6, and TNF-α in cells significantly increased when compared with the control group ( P<0.05). However, intervention with 4 μmol/L and 8 μmol/L VX765 led to a significant decrease in expression compared to the LPS group ( P<0.05). Western blot and immunofluorescence staining demonstrated a significant upregulation of Nrf2 pathway-related molecules Nrf2 and HO-1 protein expressions by VX765 ( P<0.05), indicating Nrf2 pathway activation. Histopathological examination of rat knee joint tissues and immunohistochemical staining revealed that, compared to group B, treatment with VX765 in groups C and D improved joint structural damage in rat OA, alleviated inflammatory reactions, downregulated MMP-13 expression, and increased collagen type Ⅱ expression.@*CONCLUSION@#VX765 can improve rat OA and reduce chondrocyte inflammation, possibly through the activation of the Nrf2 pathway.


Subject(s)
Rats , Animals , Chondrocytes/metabolism , Matrix Metalloproteinase 13/metabolism , Rats, Sprague-Dawley , Tumor Necrosis Factor-alpha/metabolism , Collagen Type II/metabolism , Interleukin-6 , Lipopolysaccharides/pharmacology , NF-E2-Related Factor 2/pharmacology , Inflammation/drug therapy , Osteoarthritis/metabolism , Transforming Growth Factor beta1/metabolism , Dipeptides , para-Aminobenzoates
2.
Rev. bras. ortop ; 58(4): 551-556, July-Aug. 2023. tab
Article in English | LILACS | ID: biblio-1521800

ABSTRACT

Abstract Articular cartilage injuries are common and lead to early joint deterioration and osteoarthritis. Articular cartilage repair techniques aim at forming a cartilaginous neo-tissue to support the articular load and prevent progressive degeneration. Several techniques are available for this purpose, such as microfracture and chondrocyte transplantation. However, the procedural outcome is often fibrocartilage, which does not have the same mechanical resistance as cartilaginous tissue. Procedures with autologous osteochondral graft have a morbidity risk, and tissue availability limits their use. As such, larger lesions undergo osteochondral transplantation using fresh or frozen grafts. New techniques using minced or particulate cartilage fragments or mesenchymal stem cells are promising. This paper aims to update the procedures for treating chondral lesions of the knee.


Resumo As lesões da cartilagem articular são comuns e levam à deterioração precoce da articulação e ao desenvolvimento da osteoartrite. As técnicas de reparo da cartilagem articular visam a formação de um neo-tecido cartilaginoso capaz de suportar carga articular e evitar a progressão da degeneração. Há várias técnicas disponíveis para esse fim, como a microfratura e o transplante de condrócitos. Entretanto muitas vezes o desfecho do procedimento é a formação de fibrocartilagem, que não possui a mesma resistência mecânica do tecido cartilaginoso. Em outros procedimentos, nos quais é realizado enxerto osteocondral autólogo, há risco de morbidade associada ao procedimento, além da disponibilidade limitada de tecido. Por esse motivo, o transplante osteocondral, utilizando enxertos a fresco ou congelados tem sido utilizado para lesões de maior volume. Por fim, novas técnicas utilizando fragmentos de cartilagem picada ou particulada, assim como o uso de células tronco mesenquimais se apresentam como promissores. O objetivo desse artigo é realizar uma atualização dos procedimentos para tratamento das lesões condrais do joelho.


Subject(s)
Humans , Cartilage, Articular/injuries , Fractures, Stress/therapy , Chondrocytes , Transplants , Knee Injuries/therapy
3.
Chinese Journal of Cellular and Molecular Immunology ; (12): 816-823, 2023.
Article in Chinese | WPRIM | ID: wpr-1009435

ABSTRACT

Objective To explore the protective mechanism of transdifferentiation of glomerular endothelial cells based on the differentiated embryonic chondrocyte gene 2 (DEC2) via the TGF-β/ROCK1 signaling pathway. Methods The 24 mice were randomly divided into sham group, UUO group, UUO combined with vector group and UUO combined with DEC2 group, with 6 mice in each group. A unilateral ureteral obstruction (UUO) model was established in each group, except for the sham group. In the UUO combined with vector group and UUO combined with DEC2 group, 10 μL (108 PFU) of vector or DEC2 was injected into each kidney on day 0 (immediately after UUO) under the guidance of the ultrasound system. The mice were sacrificed 14 days after the operation, and the kidneys were collected for histological examination and Western blot analysis: HE staining was used to observe the histological changes of kidneys, Masson staining to observe the renal fibrosis, and Western blot analysis to detect the protein expression. In vitro, normal human glomerular endothelial cells (GEnCs) was selected as the research objects. GEnCs stimulated with TGF-β were treated with ROCK1 inhibitor Y-27632 or DEC2 transfection. Western blot analysis was used to detect the expression of ROCK1, α-SMA, DEC2 and E-cadherin in GEnC exposed to transforming growth factor β (TGF-β). The localization of ROCK1 and DEC2 in GEnCs cells was detected by immunofluorescence cytochemistry. The relationship between the ROCK1 and DEC2 was confirmed by co-immunoprecipitation. Results Compared with the sham group, the UUO groups showed significant renal fibrosis and collagen accumulation on the 14th day. In the UUO groups, the expression of DEC2 and E-cadherin in the kidney tissue of the mice was significantly reduced, and the expression of α-SMA significantly increased. Compared with the UUO combined with vector group, the kidney fibrosis and collagen accumulation in the UUO combined with DEC2 group decreased, and the expression of ROCK1 and α-SMA decreased and the expression of DEC2 and E-cadherin increased in the kidney tissue. TGF-β enhanced the expression of ROCK1 and α-SMA in GEnCs cells in a time-dependent manner, and the levels of DEC2 and E-cadherin decreased. Treatment with the ROCK1 inhibitor Y-27632 partially abrogated the TGF-β-induced increase in the expression of ROCK1 and α-SMA and decrease in the expression of DEC2 and E-cadherin. In addition, transfection of GEnCs cells with DEC2 before TGF-β stimulation reduced the expression of ROCK1 and α-SMA, and increased the expression of DEC2 and E-cadherin. Immunofluorescence cytochemical staining showed that DEC2 co-localized with ROCK1 in GEnCs, and the co-immunoprecipitation showed that DEC2 and ROCK1 pulled down each other. Conclusions DEC2 is down-regulated in fibrotic renal tissue, while up-regulated DEC2 inhibits epithelial myofibroblast transdifferentiation and renal fibrosis of GEnC by blocking TGF-β/ROCK1 signaling pathway.


Subject(s)
Humans , Animals , Mice , Cell Transdifferentiation , Chondrocytes , Endothelial Cells , Cadherins , Signal Transduction , rho-Associated Kinases
4.
China Journal of Orthopaedics and Traumatology ; (12): 990-995, 2023.
Article in Chinese | WPRIM | ID: wpr-1009173

ABSTRACT

OBJECTIVE@#To explore and verify that transient receptor potential vanilloid 4(TRPV4) affects chondrocyte degeneration.@*METHODS@#Neonatal SD rats were selected, primary chondrocytes were extracted, and identified by toluidine blue staining and alcian blue staining;an in vitro chondrocyte inflammation model was constructed by IL-1β, and TRPV4 inhibitor was used to treat chondrocytes under inflammatory conditions, and the chondrocytes were treated by RT-PCR method was used to detect matrix metallopeptidase 13(MMP-13), a disintegrin and metalloproteinase with thrombospondin 5, (ADAMTS-5)、nitric oxide synthase 2(NOS2)、Collagen, type II alpha 1(Col2α1)and aggrecan (Acan) mRNA in chondrocytes; primary chondrocytes were treated with different concentrations of TRPV4 overexpression plasmid, and the optimal overexpression dose was screened. The mRNA expressions of TRPV4, MMP-13, ADAMTS-5, NOS2, Col2α1 and Acan in chondrocytes under the optimal TRPV4 overexpression dose were detected.@*RESULTS@#Toluidine blue staining and Alcian blue staining identified the extracted cells as primary chondrocytes;RT-PCR showed that TRPV4, MMP-13, ADAMTS-5, NOS2 mRNA in chondrocytes treated with TRPV4 inhibitor under inflammatory conditions. The expression of Col2α1 mRNA was significantly decreased (P<0.05), and the expression of Col2α1 mRNA was increased (P<0.05). Although there was no significant difference in the expression of Acan mRNA, the overall trend was also increasing. The expression of Col2α1 and Acan mRNA in chondrocytes was significantly decreased (P<0.05), and the expression of NOS2 mRNA was increased(P<0.05), but there was no significant difference in MMP-13 and ADAMTS-5 (P>0.05).@*CONCLUSION@#Inhibiting the expression of TRPV4 can down-regulate the expression of genes related to chondrocyte degeneration.


Subject(s)
Animals , Rats , Aggrecans/metabolism , Cartilage, Articular , Cells, Cultured , Chondrocytes , Interleukin-1beta/metabolism , Matrix Metalloproteinase 13/metabolism , Rats, Sprague-Dawley , RNA, Messenger/metabolism , TRPV Cation Channels/metabolism
5.
China Journal of Orthopaedics and Traumatology ; (12): 982-989, 2023.
Article in Chinese | WPRIM | ID: wpr-1009172

ABSTRACT

OBJECTIVE@#To investigate whether Salvianolic acid A (SAA) can restore cartilage endplate cell degeneration of intervertebral discs and to identify the mechanism via regulation of micro-RNA.@*METHODS@#Cartilage endplate cells were isolated from lumbar intervertebral disc surgical samples and were treated with serum containing a series of concentrations of SAA (2, 5, and 10 ?M) for 24, 48, and 72 h to identify a proper dose and treatment time of SAA. The effect SAA on interlenkin-1β (IL-1β)-induced extracellular matrix degradation of cartilage endplate cells were analyzed by Alcian blue staining and assessment of the expression levels of ADAMTS-5, MMP3 and Col2a1. Further, the potential target miRNAs were preliminarily screened by micro-RNA sequencing combining qRT-PCR and Western blot, and then, the miRNAs mimics and inhibitors were used to verify the regulatory effect of SAA on potential target miRNAs.@*RESULTS@#The 10 μM SAA treatment for 48 h significantly enhanced the viability of cartilage endplate cells, and increased Col2a1 expression and glycosaminoglycan accumulation that were repressed by IL-1β, and reduced the effect of IL-1β on ADAMTS-5, and MMP3. Screening analysis based on micro-RNA sequencing and Venny analysis identified the downstream micro-RNAs, including miR-940 and miR-576-5p. Then, the miR-940-mimic or miR-576-5p-mimic were transfected into CEPCs. Compared with the SAA group, the expression of ADAMTS-5 and MMP3 increased significantly and the expression of COL2A1 obviously decreased after overexpression of miR-940 or miR-576-5p in CEPCs.@*CONCLUSION@#Salvianolic acid A attenuated the IL-1β-induced extracellular matrix degradation of cartilage endplate cells by targeting regulate the miR-940 and the miR-576-5p.


Subject(s)
Humans , Apoptosis , Cartilage/metabolism , Chondrocytes/metabolism , Interleukin-1beta/metabolism , Matrix Metalloproteinase 3/metabolism , MicroRNAs/metabolism
6.
Journal of Biomedical Engineering ; (6): 638-644, 2023.
Article in Chinese | WPRIM | ID: wpr-1008883

ABSTRACT

Mechanical signal transduction are crucial for chondrocyte in response to mechanical cues during the growth, development and osteoarthritis (OA) of articular cartilage. Extracellular matrix (ECM) turnover regulates the matrix mechanical microenvironment of chondrocytes. Thus, understanding the mechanotransduction mechanisms during chondrocyte sensing the matrix mechanical microenvironment can develop effective targeted therapy for OA. In recent decades, growing evidences are rapidly advancing our understanding of the mechanical force-dependent cartilage remodeling and injury responses mediated by TRPV4 and PIEZOs. In this review, we highlighted the mechanosensing mechanism mediated by TRPV4 and PIEZOs during chondrocytes sensing mechanical microenvironment of the ECM. Additionally, the latest progress in the regulation of OA by inflammatory signals mediated by TRPV4 and PIEZOs was also introduced. These recent insights provide the potential mechanotheraputic strategies to target these channels and prevent cartilage degeneration associated with OA. This review will shed light on the pathogenesis of articular cartilage, searching clinical targeted therapies, and designing cell-induced biomaterials.


Subject(s)
Chondrocytes , TRPV Cation Channels , Mechanotransduction, Cellular , Biocompatible Materials , Cartilage, Articular
7.
China Journal of Chinese Materia Medica ; (24): 4843-4851, 2023.
Article in Chinese | WPRIM | ID: wpr-1008654

ABSTRACT

To investigate the mechanism by which Cangxi Tongbi Capsules promote chondrocyte autophagy to inhibit knee osteoarthritis(KOA) progression by regulating the circRNA_0008365/miR-1271/p38 mitogen-activated protein kinase(MAPK) pathway. The cell and animal models of KOA were established and intervened with Cangxi Tongbi Capsules, si-circRNA_0008365, si-NC, and Cangxi Tongbi Capsules combined with si-circRNA_0008365. Flow cytometry and transmission electron microscopy were employed to determine the level of apoptosis and observe autophagosomes, respectively. Western blot was employed to reveal the changes in the protein levels of microtubule-associated protein light chain 3(LC3)Ⅱ/Ⅰ, Beclin-1, selective autophagy junction protein p62/sequestosome 1, collagen Ⅱ, a disintegrin and metalloproteinase with thrombospondin motifs 5(ADAMTS-5), and p38 MAPK. The mRNA levels of circRNA_0008365, miR-1271, collagen Ⅱ, and ADAMTS-5 were determined by qRT-PCR. Hematoxylin-eosin staining was employed to reveal the pathological changes of the cartilage tissue of the knee, and enzyme-linked immunosorbent assay to measure the levels of interleukin-1β(IL-1β) and tumor necrosis factor-alpha(TNF-α). The chondrocytes treated with IL-1β showed down-regulated expression of circRNA_0008365, up-regulated expression of miR-1271 and p38 MAPK, lowered autophagy level, increased apoptosis rate, and accelerated catabolism of extracellular matrix. The intervention with Cangxi Tongbi Capsules up-regulated the expression of circRNA_0008365, down-regulated the expression of miR-1271 and p38 MAPK, increased the autophagy level, decreased the apoptosis rate, and weakened the catabolism of extracellular matrix. However, the effect of Cangxi Tongbi Capsules was suppressed after interfering with circRNA_0008365. The in vivo experiments showed that Cangxi Tongbi Capsules dose-dependently inhibited the p38 MAPK pathway, enhanced chondrocyte autophagy, and mitigated articular cartilage damage and inflammatory response, thereby inhibiting the progression of KOA in rats. This study indicated that Cangxi Tongbi Capsules promoted chondrocyte autophagy by regulating the circRNA_0008365/miR-1271/p38 MAPK pathway to inhibit the development of KOA.


Subject(s)
Rats , Animals , Chondrocytes , Osteoarthritis, Knee/pathology , RNA, Circular/pharmacology , p38 Mitogen-Activated Protein Kinases/metabolism , MicroRNAs/metabolism , Apoptosis , Autophagy/genetics , Collagen/metabolism
8.
Chinese Journal of Natural Medicines (English Ed.) ; (6): 99-112, 2023.
Article in English | WPRIM | ID: wpr-971673

ABSTRACT

Osteoarthritis is a prevalent global joint disease, which is characterized by inflammatory reaction and cartilage degradation. Cyasterone, a sterone derived from the roots of Cyathula officinalis Kuan, exerts protective effect against several inflammation-related diseases. However, its effect on osteoarthritis remains unclear. The current study was designed to investigate the potential anti-osteoarthritis activity of cyasterone. Primary chondrocytes isolated from rats induced by interleukin (IL)-1β and a rat model stimulated by monosodium iodoacetate (MIA) were used for in vitro and in vivo experiments, respectively. The results of in vitro experiments showed that cyasterone apparently counteracted chondrocyte apoptosis, increased the expression of collagen II and aggrecan, and restrained the production of the inflammatory factors inducible nitric oxide synthase (iNOS), cyclooxygenase-2 (COX-2), a disintegrin and metalloproteinase with thrombospondin motifs-5 (ADAMTS-5), metalloproteinase-3 (MMP-3), and metalloproteinase-13 (MMP-13) induced by IL-1β in chondrocytes. Furthermore, cyasterone ameliorated the inflammation and degenerative progression of osteoarthritis potentially by regulating the nuclear factor kappa B (NF-κB) and mitogen-activated protein kinase (MAPK) pathways. For in vivo experiments, cyasterone significantly alleviated the inflammatory response and cartilage destruction of rats induced by monosodium iodoacetate, where dexamethasone was used as the positive control. Overall, this study laid a theoretical foundation for developing cyasterone as an effective agent for the alleviation of osteoarthritis.


Subject(s)
Animals , Rats , Chondrocytes , NF-kappa B , Iodoacetic Acid , Inflammation , MAP Kinase Signaling System , Apoptosis
9.
West China Journal of Stomatology ; (6): 395-404, 2023.
Article in English | WPRIM | ID: wpr-1007920

ABSTRACT

OBJECTIVES@#This study aims to investigate the effects and mechanisms of chondroitin sulfate (CS), dermatan sulfate (DS), and heparin (HEP) on chondrogenesis of murine chondrogenic cell line (ATDC5) cells and the maintenance of murine articular cartilage in vitro.@*METHODS@#ATDC5 and articular cartilage tissue explant were cultured in the medium containing different sulfated glycosaminoglycans. Cell proliferation, differentiation, cartilage formation, and mechanism were observed using cell proliferation assay, Alcian blue staining, real-time quantitative polymerase chain reaction (RT-qPCR), and Western blot, respectively.@*RESULTS@#Results showed that HEP and DS primarily activated the bone morphogenetic protein (BMP) signal pathway, while CS primarily activated the protein kinase B (AKT) signal pathway, further promoted ATDC5 cell proliferation and matrix production, and increased Sox9, Col2a1, and Aggrecan expression.@*CONCLUSIONS@#This study investigated the differences and mechanisms of different sulfated glycosaminoglycans in chondrogenesis and cartilage homeostasis maintenance. HEP promotes cartilage formation and maintains the normal state of cartilage tissue in vitro, while CS plays a more effective role in the regeneration of damaged cartilage tissue.


Subject(s)
Animals , Mice , Cartilage/metabolism , Cell Differentiation , Cells, Cultured , Chondrocytes/metabolism , Chondrogenesis/physiology , Glycosaminoglycans/pharmacology
10.
Chinese Journal of Reparative and Reconstructive Surgery ; (12): 748-757, 2023.
Article in Chinese | WPRIM | ID: wpr-981664

ABSTRACT

OBJECTIVE@#To summarize the role of chondrocyte mitochondrial homeostasis imbalance in the pathogenesis of osteoarthritis (OA) and analyze its application prospects.@*METHODS@#The recent literature at home and abroad was reviewed to summarize the mechanism of mitochondrial homeostasis imbalance, the relationship between mitochondrial homeostasis imbalance and the pathogenesis of OA, and the application prospect in the treatment of OA.@*RESULTS@#Recent studies have shown that mitochondrial homeostasis imbalance, which is caused by abnormal mitochondrial biogenesis, the imbalance of mitochondrial redox, the imbalance of mitochondrial dynamics, and damaged mitochondrial autophagy of chondrocytes, plays an important role in the pathogenesis of OA. Abnormal mitochondrial biogenesis can accelerate the catabolic reaction of OA chondrocytes and aggravate cartilage damage. The imbalance of mitochondrial redox can lead to the accumulation of reactive oxygen species (ROS), inhibit the synthesis of extracellular matrix, induce ferroptosis and eventually leads to cartilage degradation. The imbalance of mitochondrial dynamics can lead to mitochondrial DNA mutation, decreased adenosine triphosphate production, ROS accumulation, and accelerated apoptosis of chondrocytes. When mitochondrial autophagy is damaged, dysfunctional mitochondria cannot be cleared in time, leading to ROS accumulation, which leads to chondrocyte apoptosis. It has been found that substances such as puerarin, safflower yellow, and astaxanthin can inhibit the development of OA by regulating mitochondrial homeostasis, which proves the potential to be used in the treatment of OA.@*CONCLUSION@#The mitochondrial homeostasis imbalance in chondrocytes is one of the most important pathogeneses of OA, and further exploration of the mechanisms of mitochondrial homeostasis imbalance is of great significance for the prevention and treatment of OA.


Subject(s)
Humans , Reactive Oxygen Species/metabolism , Chondrocytes/metabolism , Osteoarthritis/metabolism , Homeostasis , Mitochondria/metabolism , Cartilage, Articular/metabolism
11.
Chinese Acupuncture & Moxibustion ; (12): 447-453, 2023.
Article in Chinese | WPRIM | ID: wpr-980743

ABSTRACT

OBJECTIVE@#To observe the effect of needle-knife on the chondrocyte apoptosis of knee joint in rabbits with knee osteoarthritis (KOA) based on the CircSERPINE2-miR-1271-5P-E26 specific transformation-related gene (ERG) axis, and to explore the mechanism of needle-knife for KOA.@*METHODS@#Thirty-six New Zealand white rabbits were randomly divided into a normal group, a model group, a needle-knife group and a sham needle-knife group, 9 rabbits in each group. The rabbits in the model group, the needle-knife group and the sham needle-knife group were treated with modified Videman method to prepare KOA model. After successful modeling, the rabbits in the needle-knife group were treated with needle-knife at cord adhesion and nodules near quadriceps femoris tendon and internal and external collateral ligament on the affected knee joint; the rabbits in the sham needle-knife group were treated with sham needle-knife baside the needle insertion point of the needle-knife group (needle-knife was only inserted, without any operation). The treatment was given once a week, 3 times in total. The Lequesne MG behavioral score was used to evaluate the knee joint damage in each group before and after intervention. After intervention, HE staining and transmission electron microscopy were used to observe the cartilage tissue morphology and ultrastructure of chondrocytes in the knee joint in each group; TUNEL method was used to detect the level of chondrocyte apoptosis in the knee joint; real-time fluorescence quantitative PCR was used to detect the expression of CircSERPINE2, miR-1271-5P and ERG mRNA in knee cartilage tissue in each group.@*RESULTS@#After intervention, compared with the normal group, the Lequesne MG behavioral score in the model group was increased (P<0.01). Compared with the model group and the sham needle-knife group, the Lequesne MG behavioral score in the needle-knife group was decreased (P<0.01). In the model group and the sham needle-knife group, the number of chondrocytes and organelles was decreased, the cell nucleus was shrunk, mitochondria was swelling or disappeared; in the needle-knife group, the number of chondrocytes and organelles was increased, the cell nucleus was not obviously shrunk and the mitochondria was not obviously swelling. Compared with the normal group, the level of chondrocyte apoptosis in the model group was increased (P<0.01); compared with the model group and the sham needle-knife group, the level of chondrocyte apoptosis in the needle-knife group was decreased (P<0.01, P<0.05). Compared with the normal group, the expression of CircSERPINE2 and ERG mRNA in the model group was decreased (P<0.01), and the expression of miR-1271-5P mRNA was increased (P<0.01); compared with the model group and the sham needle-knife group, the expression of CircSERPINE2 and ERG mRNA in the needle-knife group was increased (P<0.01), and the expression of miR-1271-5P mRNA was decreased (P<0.01).@*CONCLUSION@#Needle-knife could reduce the knee joint damage and chondrocyte apoptosis in KOA rabbits, which may be related to up-regulating the expression of CircSERPINE2 and ERG mRNA, and inhibiting the expression of miR-1271-5P mRNA.


Subject(s)
Rabbits , Animals , Osteoarthritis, Knee/metabolism , Chondrocytes/metabolism , Knee Joint/surgery , Apoptosis , MicroRNAs/genetics
12.
Chinese Journal of Stomatology ; (12): 57-63, 2023.
Article in Chinese | WPRIM | ID: wpr-970755

ABSTRACT

Objective: To preliminarily explore the mechanism of tensile stress regulating endochondral osteogenesis of condyle by analyzing the expression profiles of significantly different microRNAs (miRNAs) in exosomes of rat mandibular condylar chondrocytes (MCC) under quiescent and cyclic tensile strain (CTS) conditions. Methods: Rat condylar chondrocytes were cultured under static and CTS conditions respectively (10 SD rats, male, 2 weeks old), and exosomes were extracted. The two groups of exosomes were named as control group and CTS group respectively. The differential expression miRNAs were screened by high-throughput sequencing. Bioinformatics analysis and prediction of target genes related to osteogenesis were performed by TargetScan and miRanda website. Results: The exosomes of rat condylar chondrocytes cultured under tensile stress showed a "double concave disc" monolayer membrane structure, the expression of CD9 and CD81 were positive, and the particle size distribution accorded with the characteristics of exosomes, which was consistent with that of static cultured rat condylar chondrocytes. A total of 85 miRNAs with significantly different expression were detected by high-throughput sequencing (P<0.05). The main biological processes and molecular functions of differential miRNAs were biological processes and protein binding, respectively. Kyoto Encyclopedia of Genes and Genomes (KEGG) database pathway enrichment analysis showed that there was significant enrichment in mammalian target of rapamycin (mTOR) signal pathway. The candidate target genes of miR-199a-5p include bone morphogenetic protein 3 (BMP3), endothelin converting enzyme 1, and miR-186-5p may target Smad8 and BMP3 to exert osteogenesis-related functions. Conclusions: Compared with static state, tensile stress stimulation can change the expression of miRNAs such as miR-199a-5p, miR-186-5p in the exocrine body of rat condylar chondrocytes, which can be considered as a mean to regulate the application potential of the exosomes.


Subject(s)
Animals , Male , Rats , Bone Morphogenetic Protein 3 , Chondrocytes/metabolism , Mandibular Condyle , MicroRNAs/metabolism , Rats, Sprague-Dawley , Signal Transduction , Stress, Mechanical
13.
Journal of Biomedical Engineering ; (6): 95-102, 2023.
Article in Chinese | WPRIM | ID: wpr-970678

ABSTRACT

The study aims to explore the effect of mesenchymal stem cells-derived exosomes (MSCs-Exo) on staurosporine (STS)-induced chondrocyte apoptosis before and after exposure to pulsed electromagnetic field (PEMF) at different frequencies. The AMSCs were extracted from the epididymal fat of healthy rats before and after exposure to the PEMF at 1 mT amplitude and a frequency of 15, 45, and 75 Hz, respectively, in an incubator. MSCs-Exo was extracted and identified. Exosomes were labeled with DiO fluorescent dye, and then co-cultured with STS-induced chondrocytes for 24 h. Cellular uptake of MSC-Exo, apoptosis, and the protein and mRNA expression of aggrecan, caspase-3 and collagenⅡA in chondrocytes were observed. The study demonstrated that the exposure of 75 Hz PEMF was superior to 15 and 45 Hz PEMF in enhancing the effect of exosomes in alleviating chondrocyte apoptosis and promoting cell matrix synthesis. This study lays a foundation for the regulatory mechanism of PEMF stimulation on MSCs-Exo in inhibiting chondrocyte apoptosis, and opens up a new direction for the prevention and treatment of osteoarthritis.


Subject(s)
Animals , Rats , Apoptosis , Chondrocytes , Electromagnetic Fields , Exosomes/physiology , Mesenchymal Stem Cells/metabolism
14.
Journal of Southern Medical University ; (12): 785-793, 2022.
Article in Chinese | WPRIM | ID: wpr-941006

ABSTRACT

OBJECTIVE@#To explore the mechanism by which inositol-requiring enzyme-1α (IRE1α) regulates autophagy function of chondrocytes through calcium homeostasis endoplasmic reticulum protein (CHERP).@*METHODS@#Cultured human chondrocytes (C28/I2 cells) were treated with tunicamycin, 4μ8c, rapamycin, or both 4μ8c and rapamycin, and the expressions of endoplasmic reticulum (ER) stress- and autophagy-related proteins were detected with Western blotting. Primary chondrocytes from ERN1 knockout (ERN1 CKO) mice and wild-type mice were examined for ATG5 and ATG7 mRNA expressions, IRE1α and p-IRE1α protein expressions, and intracellular calcium ion content using qPCR, Western blotting and flow cytometry. The effect of bafilomycin A1 treatment on LC3 Ⅱ/LC3 Ⅰ ratio in the isolated chondrocytes was assessed with Western blotting. Changes in autophagic flux of the chondrocytes in response to rapamycin treatment were detected using autophagy dual fluorescent virus. The changes in autophagy level in C28/I2 cells overexpressing CHERP and IRE1α were detected using immunofluorescence assay.@*RESULTS@#Tunicamycin treatment significantly up-regulated ER stress-related proteins and LC3 Ⅱ/LC3 Ⅰ ratio and down-regulated the expression of p62 in C28/I2 cells (P < 0.05). Rapamycin obviously up-regulated LC3 Ⅱ/LC3 Ⅰ ratio (P < 0.001) in C28/I2 cells, but this effect was significantly attenuated by co-treatment with 4μ8c (P < 0.05). Compared with the cells from the wild-type mice, the primary chondrocytes from ERN1 knockout mice showed significantly down-regulated mRNA levels of ERN1 (P < 0.01), ATG5 (P < 0.001) and ATG7 (P < 0.001), lowered or even lost expressions of IRE1α and p-IRE1α proteins (PP < 0.01), and increased expression of CHERP (P < 0.05) and intracellular calcium ion content (P < 0.001). Bafilomycin A1 treatment obviously increased LC3 Ⅱ/ LC3 Ⅰ ratio in the chondrocytes from both wild-type and ERN1 knockout mice (P < 0.01 or 0.05), but the increment was more obvious in the wild-type chondrocytes (P < 0.05). Treatment with autophagy dual-fluorescence virus resulted in a significantly greater fluorescence intensity of LC3-GFP in rapamycin-treated ERN1 CKO chondrocytes than in wild-type chondrocytes (P < 0.05). In C28/I2 cells, overexpression of CHERP obviously decreased the fluorescence intensity of LC3, and overexpression of IRE1α enhanced the fluorescence intensity and partially rescued the fluorescence reduction of LC3 caused by CHERP.@*CONCLUSION@#IRE1α deficiency impairs autophagy in chondrocytes by upregulating CHERP and increasing intracellular calcium ion content.


Subject(s)
Animals , Mice , Autophagy , Calcium/metabolism , Chondrocytes , Endoplasmic Reticulum/metabolism , Endoribonucleases/pharmacology , Homeostasis , Inositol , Mice, Knockout , Protein Serine-Threonine Kinases , RNA, Messenger/metabolism , Sirolimus/pharmacology , Tunicamycin/pharmacology
15.
International Journal of Oral Science ; (4): 15-15, 2022.
Article in English | WPRIM | ID: wpr-929143

ABSTRACT

Microenvironmental biophysical factors play a fundamental role in controlling cell behaviors including cell morphology, proliferation, adhesion and differentiation, and even determining the cell fate. Cells are able to actively sense the surrounding mechanical microenvironment and change their cellular morphology to adapt to it. Although cell morphological changes have been considered to be the first and most important step in the interaction between cells and their mechanical microenvironment, their regulatory network is not completely clear. In the current study, we generated silicon-based elastomer polydimethylsiloxane (PDMS) substrates with stiff (15:1, PDMS elastomer vs. curing agent) and soft (45:1) stiffnesses, which showed the Young's moduli of ~450 kPa and 46 kPa, respectively, and elucidated a new path in cytoskeleton re-organization in chondrocytes in response to changed substrate stiffnesses by characterizing the axis shift from the secreted extracellular protein laminin β1, focal adhesion complex protein FAK to microfilament bundling. We first showed the cellular cytoskeleton changes in chondrocytes by characterizing the cell spreading area and cellular synapses. We then found the changes of secreted extracellular linkage protein, laminin β1, and focal adhesion complex protein, FAK, in chondrocytes in response to different substrate stiffnesses. These two proteins were shown to be directly interacted by Co-IP and colocalization. We next showed that impact of FAK on the cytoskeleton organization by showing the changes of microfilament bundles and found the potential intermediate regulators. Taking together, this modulation axis of laminin β1-FAK-microfilament could enlarge our understanding about the interdependence among mechanosensing, mechanotransduction, and cytoskeleton re-organization.


Subject(s)
Cell Adhesion , Chondrocytes , Cytoskeleton/metabolism , Elastomers/metabolism , Laminin/metabolism , Mechanotransduction, Cellular
16.
Journal of Southern Medical University ; (12): 528-537, 2022.
Article in Chinese | WPRIM | ID: wpr-936344

ABSTRACT

OBJECTIVE@#To assess the efficacy of GelMA hydrogel loaded with bone marrow stem cell-derived exosomes for repairing injured rat knee articular cartilage.@*METHODS@#The supernatant of cultured bone marrow stem cells was subjected to ultracentrifugation separate and extract the exosomes, which were characterized by transmission electron microscopy, particle size analysis and Western blotting of the surface markers. The changes in rheology and electron microscopic features of GelMA hydrogel were examined after loading the exosomes. We assessed exosome release from the hydrogel was detected by BCA protein detection method, and labeled the exosomes with PKH26 red fluorescent dye to observe their phagocytosis by RAW264.7 cells. The effects of the exosomes alone, unloaded hydrogel, and exosome-loaded hydrogel on the polarization of RAW264.7 cells were detected by q-PCR and immunofluorescence assay. We further tested the effect of the exosome-loaded hydrogel on cartilage repair in a Transwell co-culture cell model of RAW264.7 cells and chondrocytes in a rat model of knee cartilage injury using q-PCR and immunofluorescence assay and HE and Masson staining.@*RESULTS@#GelMA hydrogel loaded with exosomes significantly promoted M2-type polarization of RAW264.7 cells (P < 0.05). In the Transwell co-culture model, the exosome-loaded GelMA hydrogel significantly promoted the repair of injured chondrocytes by regulating RAW264.7 cell transformation from M1 to M2 (P < 0.05). HE and Masson staining showed that the exosome-loaded hydrogel obviously promoted cartilage repair in the rat models damage.@*CONCLUSION@#GelMA hydrogel loaded with bone marrow stem cell-derived exosomes can significantly promote the repair of cartilage damage in rats by improving the immune microenvironment.


Subject(s)
Animals , Rats , Bone Marrow Cells , Cartilage , Chondrocytes , Exosomes , Hydrogels/metabolism
17.
Chinese Acupuncture & Moxibustion ; (12): 59-65, 2022.
Article in Chinese | WPRIM | ID: wpr-927335

ABSTRACT

OBJECTIVE@#To observe the effect of needle knife on chondrocyte autophagy and expressions of autophagy-related protein and mammalian target of rapamycin (mTOR) in rats with knee osteoarthritis (KOA), and to explore the possible mechanism of needle knife for KOA.@*METHODS@#A total of 42 SD rats were randomly divided into a normal group, a model group and a needle knife group, 14 rats in each group. Except for the normal group, the other two groups were injected with the mixture of papain and L-cysteine into the left hind knee joint to establish the KOA model. After modeling, the rats in the needle knife group were treated with needle knife at strip or nodule around the quadriceps femoris and medial and lateral collateral ligament on the affected side, once a week for 3 times (3 weeks). The changes of left knee circumference in each group were observed; the chondrocytes and ultrastructure of left knee joint were observed by HE staining and electron microscope; the mRNA and protein expressions of autophagy-related genes (Atg5, Atg12, Atg4a), Unc-51 like autophagy activated kinase 1 (ULK1), autophagy gene Beclin-1 and mTOR in left knee cartilage were detected by real-time fluorescence quantitative PCR and Western blot.@*RESULTS@#After modeling, the left knee circumferences in the model group and the needle knife group were increased compared with those before modeling and in the normal group (P<0.05); after intervention, the left knee circumference in the needle knife group was smaller than that in the model group and after modeling (P<0.05). Compared with the normal group, the number of chondrocytes was decreased, and a few cells swelled, nuclei shrank, mitochondria swelled and autophagosomes decreased in the model group; compared with the model group, the number of chondrocytes was increased , and most cell structures returned to normal, and autophagosomes was increased. Compared with the normal group, the mRNA and protein expressions of Atg5, Atg12, Atg4a, Beclin-1 and ULK1 in the knee cartilage in the model group were decreased (P<0.05); compared with the model group, the expressions of the above indexes in the needle knife group were increased (P<0.05). Compared with the normal group, the mRNA and protein expressions of mTOR in the knee cartilage in the model group were increased (P<0.05); compared with the model group, the expressions of the above indexes in the needle knife group were decreased (P<0.05).@*CONCLUSION@#The needle knife intervention could improve knee cartilage injury in rats with KOA, and its mechanism may be related to reducing the expression of mTOR and up-regulating the expressions of Atg5, Atg12, Atg4a, ULK1 and Beclin-1, so as to promote chondrocyte autophagy and delay the aging and degeneration of chondrocytes.


Subject(s)
Animals , Rats , Autophagy , Autophagy-Related Protein-1 Homolog/genetics , Beclin-1/genetics , Chondrocytes , Osteoarthritis, Knee/therapy , Rats, Sprague-Dawley , TOR Serine-Threonine Kinases/genetics
18.
São Paulo; s.n; s.n; 2022. 116 p. tab, graf.
Thesis in English | LILACS | ID: biblio-1378343

ABSTRACT

Stem cells are undifferentiated cells that can be distinguished from others by their ability to self-renew and to differentiate into new specific cell types. Mesenchymal stem cells (MSC) are adult stem cells that can be obtained from different sources, such as adipose tissue, bone marrow, dental pulp, and umbilical cord. They can either replicate, originating new identical cells, or differentiate into cells of mesodermal origin and from other germ layers. MSC have been studied as new tools for regenerative therapy. Although encouraging results have been demonstrated, MSC-based therapies still face a great barrier: the difficulty of isolating these cells from heterogeneous environments. MSC are currently characterized by immunolabelling through a set of multiple surface membrane markers, including CD29, CD73, CD90 and CD105, which are also expressed by other cell types. Hence, the present work aimed to identify new specific biomarkers for the characterization of human MSC using DNA aptamers produced by the SELEX (Systematic Evolution of Ligands by EXponential Enrichment) technique. Our results showed that MSC from different origins bound to DNA candidate aptamers, that is, DNA or RNA oligonucleotides selected from random libraries that bind specifically to biological targets. Aptamer-bound MSC could be isolated by fluorescenceactivated cell sorting (FACS) procedures, enhancing the induction of differentiation into specific phenotypes (chondrocytes, osteocytes and adipocytes) when compared to the whole MSC population. Flow cytometry analyses revealed that candidate aptamers bound to 50% of the MSC population from dental pulp and did not present significant binding rates to human fibroblasts or lymphocytes, both used as negative control. Moreover, immunofluorescence images and confocal analyses revealed staining of MSC by aptamers localized in the surfacemembrane of these cells. The results also showed internal staining of human monocytes by our investigated aptamers. A non-specific control aptamer (CNTR APT) obtained from the random pool was then utilized to compare the specificity of the aptamers bound to the analyzed non-apoptotic cells, showing no staining for MSC. However, 40% of the monocytes bound to the CNTR APT. Normalized data based on the cells bound to candidate aptamers compared to those bound to the CNTR APT, revealed a 10 to 16-fold higher binding rate for MSC against 2-fold for monocytes. Despite its low specificity, monocyte-aptamer binding occurs probably due to the expression of shared markers with MSC, since monocytes are derived from hematopoietic stem cells and are important for the immune system ability to internalize/phagocyte external molecules. Given that, we performed a pull-down assay followed by mass spectrometry analysis to detect which MSC-specific protein or other target epitope not coexpressed by monocytes or the CNTR APT would bind to the candidate aptamer. Distinguishing between MSC and monocyte epitopes is important, as both cells are involved in immunomodulatory effects after MSC transplantations. ADAM17 was found to be a target of the APT10, emerging as a possible biomarker of MSC, since its involvement in the inhibition of the TGF signaling cascade, which is responsible for the differentiation of MSC. Thus, MSC with a higher stemness profile should overexpress the protein ADAM17, which presents a catalytic site with affinity to APT10. Another target of Apt 10 is VAMP3, belonging to a transmembrane protein complex that is involved in endocytosis and exocytosis processes during immune and inflammatory responses. Overall, proteins identified as targets of APT10 may be cell surface MSC biomarkers, with importance for MSC-based cell and immune therapies


Células tronco são células indiferenciadas que podem ser distinguidas de outros tipos celulares por meio da habilidade de se auto renovarem e de se diferenciarem em novos tipos celulares. Células tronco mesenquimais (MSC) são células tronco adultas encontradas em diferentes tecidos como tecido adiposo, polpa de dente e cordão umbilical. Estas células podem se autodividir em células idênticas ou se diferenciarem em células de origem mesodermal. Estas células têm sido estudadas em novas aplicações que envolvem terapia regenerativas. Embora resultados encorajadores tenham sido demonstrados, terapias que utilizam MSC ainda encontram uma grande barreira: a dificuldade no isolamento destas células a partir de um ambiente heterogêneo. MSC são caracterizadas por populações positivas em ensaios de imunomarcação para os epítopos membranares CD29, CD73, CD90 e CD105, presentes também em outros tipos celulares. Assim, o presente trabalho tem o objetivo de identificar novos biomarcadores de MSC de origem humana, utilizando aptâmeros de DNA produzidos pela técnica SELEX (Systematic Evolution of Ligands by EXponential Enrichment) como ferramenta. Nossos resultados mostraram que MSC de diferentes origens ligam-se a aptâmeros (oligonucleotídeos de DNA ou RNA que atuam como ligantes específicos de alvos moleculares) de DNA candidatos que atuam no isolamento de MSC por meio da técnica FACS de separação celular, promovendo uma maior indução de diferenciação em células específicas (condrócitos, osteócitos e adipócitos) comparada com a população total de MSC. Análises de citometria de fluxo mostraram que os aptâmeros candidatos se ligam a 50% das MSC de polpa de dente e não apresentam taxa de ligação significante para fibroblastos e linfócitos de origem humana - utilizados como controles negativo. Além domais, imagens de imunofluorescência e confocal mostraram ligação na superfície da membrana de MSC e a marcação interna de monócitos a estes aptâmeros. Portanto, um aptâmero controle (CNTR APT) foi utilizado para comparar a especificidade dos aptâmeros ligados a células viáveis, mostrando a não ligação deste aptâmero a MSC. Porém, 40% da população de monócitos ligou-se ao CNTR APT. Uma normalização baseada na comparação entre as taxas de ligação entre células ligadas com aptâmeros candidatos e o aptâmero controle gerou uma taxa de especificidade entre 10-16 vezes maior para MSC contra 2,5 vezes para os monócitos. Deste modo, embora os resultados tenham mostrado uma taxa de ligação entre monócitos e aptâmeros, as MSC ligadas aos aptâmeros candidatos possuem uma maior taxa de especificidade devido a uma maior presença de antígenos que são expressos em ambas as células. Um ensaio de Pull Down seguido de espectrometria de massas foi utilizado para a identificação de biomarcadores que se ligariam aos aptâmeros candidatos, e que não seriam co-expressos por monócitos e por antígenos ligados ao aptâmero controle. Deste modo, a proteína ADAM17 foi identificada nas amostras de APT10 ligadas às MSC. Tal proteína está relacionada à inibição de uma cascata de sinalização da família de proteínas TGF, responsável pela diferenciação de MSC. Assim, MSC com maior potencial tronco deveriam expressar ADAM17 em maior quantidade. Tal proteína apresenta um sítio catalítico que demonstra interagir com o APT10, de acordo com predição Docking entre proteína e DNA. Foi identificada também, a proteína VAMP3, que pertence a um complexo proteico transmembranar responsável pelos processos de endocitose e exocitose, e que podem ter um papel importante na liberação de citocinas e outras moléculas relacionadas às respostas imune e inflamatórias. Deste modo, o APT10 identificou proteínas importantes que devem estar relacionas com a melhora de imunoterapias que utilizam MSC


Subject(s)
Stem Cells , Biomarkers/analysis , SELEX Aptamer Technique/instrumentation , Mesenchymal Stem Cells/classification , ADAM17 Protein/pharmacology , Patient Isolation , Mass Spectrometry/methods , Staining and Labeling/methods , Transplantation/adverse effects , Umbilical Cord , DNA/agonists , Transforming Growth Factors/agonists , Cell Separation/instrumentation , Cytokines/adverse effects , Adipocytes/metabolism , Chondrocytes/classification , Scientists for Health and Research for Development , Adult Stem Cells/classification , Fibroblasts/chemistry , Flow Cytometry/instrumentation , Germ Layers , Antigens/adverse effects
19.
International Journal of Oral Science ; (4): 34-34, 2022.
Article in English | WPRIM | ID: wpr-939853

ABSTRACT

Osteoarthritis (OA) is a prevalent joint disease with no effective treatment strategies. Aberrant mechanical stimuli was demonstrated to be an essential factor for OA pathogenesis. Although multiple studies have detected potential regulatory mechanisms underlying OA and have concentrated on developing novel treatment strategies, the epigenetic control of OA remains unclear. Histone demethylase JMJD3 has been reported to mediate multiple physiological and pathological processes, including cell differentiation, proliferation, autophagy, and apoptosis. However, the regulation of JMJD3 in aberrant force-related OA and its mediatory effect on disease progression are still unknown. In this work, we confirmed the upregulation of JMJD3 in aberrant force-induced cartilage injury in vitro and in vivo. Functionally, inhibition of JMJD3 by its inhibitor, GSK-J4, or downregulation of JMJD3 by adenovirus infection of sh-JMJD3 could alleviate the aberrant force-induced chondrocyte injury. Mechanistic investigation illustrated that aberrant force induces JMJD3 expression and then demethylates H3K27me3 at the NR4A1 promoter to promote its expression. Further experiments indicated that NR4A1 can regulate chondrocyte apoptosis, cartilage degeneration, extracellular matrix degradation, and inflammatory responses. In vivo, anterior cruciate ligament transection (ACLT) was performed to construct an OA model, and the therapeutic effect of GSK-J4 was validated. More importantly, we adopted a peptide-siRNA nanoplatform to deliver si-JMJD3 into articular cartilage, and the severity of joint degeneration was remarkably mitigated. Taken together, our findings demonstrated that JMJD3 is flow-responsive and epigenetically regulates OA progression. Our work provides evidences for JMJD3 inhibition as an innovative epigenetic therapy approach for joint diseases by utilizing p5RHH-siRNA nanocomplexes.


Subject(s)
Humans , Cartilage, Articular/pathology , Chondrocytes/metabolism , Down-Regulation , Epigenesis, Genetic , Jumonji Domain-Containing Histone Demethylases/metabolism , Nuclear Receptor Subfamily 4, Group A, Member 1/metabolism , Osteoarthritis/pathology , RNA, Small Interfering/pharmacology
20.
International Journal of Oral Science ; (4): 33-33, 2022.
Article in English | WPRIM | ID: wpr-939852

ABSTRACT

The progressive destruction of condylar cartilage is a hallmark of the temporomandibular joint (TMJ) osteoarthritis (OA); however, its mechanism is incompletely understood. Here, we show that Kindlin-2, a key focal adhesion protein, is strongly detected in cells of mandibular condylar cartilage in mice. We find that genetic ablation of Kindlin-2 in aggrecan-expressing condylar chondrocytes induces multiple spontaneous osteoarthritic lesions, including progressive cartilage loss and deformation, surface fissures, and ectopic cartilage and bone formation in TMJ. Kindlin-2 loss significantly downregulates the expression of aggrecan, Col2a1 and Proteoglycan 4 (Prg4), all anabolic extracellular matrix proteins, and promotes catabolic metabolism in TMJ cartilage by inducing expression of Runx2 and Mmp13 in condylar chondrocytes. Kindlin-2 loss decreases TMJ chondrocyte proliferation in condylar cartilages. Furthermore, Kindlin-2 loss promotes the release of cytochrome c as well as caspase 3 activation, and accelerates chondrocyte apoptosis in vitro and TMJ. Collectively, these findings reveal a crucial role of Kindlin-2 in condylar chondrocytes to maintain TMJ homeostasis.


Subject(s)
Animals , Mice , Aggrecans/metabolism , Cartilage, Articular/metabolism , Chondrocytes/pathology , Cytoskeletal Proteins/metabolism , Muscle Proteins/metabolism , Osteoarthritis/pathology , Temporomandibular Joint/pathology
SELECTION OF CITATIONS
SEARCH DETAIL