Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 20 de 2.446
Filter
1.
Medwave ; 22(2): e005919, mar.2022. ilus
Article in English, Spanish | LILACS | ID: biblio-1366389

ABSTRACT

La transformación nodular angiomatoide esclerosante es una patología vascular benigna del bazo, desarrollada a partir de la pulpa roja, de etiología desconocida. Se postula que puede estar relacionada con la enfermedad por inmunoglobulina 4 y la infección por el virus de Epstein-Barr. La mayoría de los casos son asintomáticos, constituyendo hallazgos incidentales en estudios por imágenes. Presentamos el caso de un paciente masculino de 41 años con antecedentes de tiroidectomía por carcinoma papilar que consulta por fiebre. Recibió tratamiento sintomático y se realizó tomografía computarizada de abdomen por síntomas abdominales inespecíficos. La tomografía evidenció una imagen de aspecto sólido, con tenue realce periférico con el contraste que mide 62 por 52 por 51 milímetros en el polo inferior del bazo. Se realizó esplenectomía que midió 14 por 11 por 4 centímetros y pesó 284 gramos. Se identificó una formación nodular sólida, bien delimitada, con área central de aspecto fibroso, con tractos blanquecinos que delimitan áreas violáceas. La microscopía presentó nódulos coalescentes redondeados de aspecto angiomatoide, con proliferación vascular revestida por células endoteliales sin atipia, entremezclados con células ahusadas, infiltrado de linfocitos y macrófagos. El estroma entre los nódulos mostró proliferación miofibroblástica con linfocitos, plasmocitos y siderófagos. Inmunohistoquímica tuvo marcación positiva en los vasos para CD34 y CD31, sectores positivos para CD8 y negativos para CD34. Una célula positiva para inmunoglobulina 4 (IgG4) por campo de gran aumento. El estudio para Epstein-Barr por reacción en cadena de la polimerasa fue negativo. Para el diagnóstico los estudios de imagen son inespecíficos, por lo que la confirmación diagnóstica la da el estudio histopatológico. La esplenectomía es curativa sin casos reportados hasta la actualidad de transformación maligna o recidiva. No se conocen factores de riesgo y no se han comprobado factores desencadenantes, excepto la asociación de casos con IgG4 y virus de Ebstein-Barr. Por ser una entidad patológica recientemente descrita es necesario recopilar series grandes y revisar nuestros archivos, reevaluando algunos de sus diagnósticos diferenciales para lograr una mejor comprensión de la misma.


Sclerosing angiomatoid nodular transformation is a benign vascular pathology of the spleen, developed from the red pulp, of unknown etiology; it is postulated that it may be related to IgG4 disease and Epstein-Barr virus infection. Most cases are asymptomatic, constituting incidental findings in imaging studies. We present a 41-year-old male patient with a history of thyroidectomy for papillary carcinoma who consulted for fever, received symptomatic treatment and performed a computed tomography of the abdomen for nonspecific abdominal symptoms, the same evidence in the lower pole of the spleen a solid-looking image with faint Peripheral enhancement with contrast, measures 62x 52x51 mm. A splenectomy measuring 14x 11x4 cm and weighing 284 grams was performed, identifying a solid, well-defined nodular formation, with a central fibrous-looking area, with whitish tracts that delimited purplish areas. Microscopy: rounded angiomatoid-like coalescing nodules, with vascular proliferation lined by endothelial cells without atypia, interspersed with spindle cells, infiltrated by lymphocytes and macrophages. The stroma between the nodules shows myofibroblastic proliferation with lymphocytes, plasma cells, and siderophages. Immunohistochemistry: positive labeling in vessels for CD34 and CD31, positive sectors for CD8 and negative for CD34. One IgG4 positive cell per high power field. The study for Epstein-Barr by Polymesara Chain Reaction was negative. For the diagnosis, the imaging studies are nonspecific, so the diagnostic confirmation is given by the histopathological study. Splenectomy is curative with no reported cases of malignant transformation or recurrence to date. There are no known risk factors and no triggering factors have been proven, except the association of cases with IgG4 and Ebstein-Barr virus. As it is a recently described pathological entity, it is necessary to collect large series and review our files, reevaluating some of its differential diagnoses to achieve a better understanding of it


Subject(s)
Humans , Male , Adult , Histiocytoma, Benign Fibrous/diagnosis , Histiocytoma, Benign Fibrous/pathology , Epstein-Barr Virus Infections/pathology , Spleen/pathology , Herpesvirus 4, Human , Endothelial Cells/pathology , Abdomen/pathology
2.
Rev. Assoc. Med. Bras. (1992) ; 68(2): 147-151, Feb. 2022. tab
Article in English | LILACS | ID: biblio-1365347

ABSTRACT

SUMMARY OBJECTIVE: Beta-thalassemia minor is a blood disease caused by a hereditary decrease in beta-globin synthesis, frequently leading to hypochromic microcytic anemia. Formerly called endothelial cell-specific molecule 1, endocan is a proteoglycan released by vascular endothelial cells in many organs. Our aim was to investigate the relationship between the beta-thalassemia minor patients and the healthy control group in terms of serum endocan level. METHODS: The study was performed in a total of 80 subjects. They were divided into two groups, the beta-thalassemia minor group (n=40) and the healthy control group (n=40). Serum endocan levels, age, sex, body mass index value, and tobacco use data of these groups were compared. RESULTS: No statistically significant difference was detected between the two groups in terms of age, sex, and body mass index values (p>0.05). Endocan levels were measured to be 206.85±88.1 pg/mL in the beta-thalassemia minor group and 236.1±162.8 pg/mL in the control group with no significant difference between the groups in terms of serum endocan levels (p>0.05). CONCLUSIONS: In our study, there was no change in endocan level in beta-thalassemia minor. This might be because serum endocan levels are affected by multi-factorial reasons. Serum endocan levels may be altered secondarily to decreased beta-globin chain, increased sympathetic activity due to anemia, or platelet dysfunction induced by oxidative stress in beta-thalassemia minor. Further multicenter studies involving more patients are necessary to demonstrate this.


Subject(s)
Humans , Proteoglycans , beta-Thalassemia , Neoplasm Proteins , Biomarkers , Body Mass Index , Endothelial Cells
3.
Article in Chinese | WPRIM | ID: wpr-936338

ABSTRACT

OBJECTIVE@#To investigate the effects of wogonoside on high glucose-induced dysfunction of human retinal microvascular endothelial cells (hRMECs) and streptozotocin (STZ)-induced diabetic retinopathy in rats and explore the underlying molecular mechanism.@*METHODS@#HRMECs in routine culture were treated with 25 mmol/L mannitol or exposed to high glucose (30 mmol/L glucose) and treatment with 10, 20, 30, 40 μmol/L wogonoside. CCK-8 assay and Transwell assay were used to examine cell proliferation and migration, and the changes in tube formation and monolayer cell membrane permeability were tested. ROS, NO and GSH-ST kits were used to evaluate oxidative stress levels in the cells. The expressions of IL-1β and IL-6 in the cells were examined with qRT-PCR and ELISA, and the protein expressions of VEGF, HIF-1α and SIRT1 were detected using Western blotting. We also tested the effect of wogonoside on retinal injury and expressions of HIF-1α, ROS, VEGF, TNF-α, IL-1β, IL-6 and SIRT1 proteins in rat models of STZ-induced diabetic retinopathy.@*RESULTS@#High glucose exposure caused abnormal proliferation and migration, promoted angiogenesis, increased membrane permeability (P < 0.05), and induced inflammation and oxidative stress in hRMECs (P < 0.05). Wogonoside treatment concentration-dependently inhibited high glucose-induced changes in hRMECs. High glucose exposure significantly lowered the expression of SIRT1 in hRMECs, which was partially reversed by wogonoside (30 μmol/L) treatment; interference of SIRT1 obviously attenuated the inhibitory effects of wogonoside against high glucose-induced changes in proliferation, migration, angiogenesis, membrane permeability, inflammation and oxidative stress in hRMECs. In rat models of STZ-induced diabetic retinopathy, wogonoside effectively suppressed retinal thickening (P < 0.05), alleviated STZ-induced retinal injury, and increased the expression of SIRT1 in the retinal tissues (P < 0.001).@*CONCLUSION@#Wogonoside alleviates retinal damage caused by diabetic retinopathy by up-regulating SIRT1 expression.


Subject(s)
Animals , Diabetes Mellitus/metabolism , Diabetic Retinopathy/metabolism , Endothelial Cells , Flavanones , Glucose/pharmacology , Glucosides , Inflammation/metabolism , Interleukin-6/metabolism , Neovascularization, Pathologic/metabolism , Rats , Reactive Oxygen Species/metabolism , Sirtuin 1/metabolism , Streptozocin/pharmacology , Vascular Endothelial Growth Factor A/metabolism
4.
Article in Chinese | WPRIM | ID: wpr-936190

ABSTRACT

Objective: To analyze the classification and functions of cell subsets in laryngeal carcinoma and metastatic lymph nodes, and to explore the evolution trajectory of epithelial cells to tumor cells. Methods: Single-cell RNA sequencing was performed on 5 cases of laryngeal cancer, matched metastatic lymph nodes and 3 normal tissues. Patients were admitted to Ningbo Medical Center Lihuili Hospital from October 22, 2019 to December 16, all patients were male, aged 53-70 years old. Cell subsets of the above-mentioned tissues were analyzed by the Seurat, and the biological functions of cell subpopulation were investigated by functional enrichment analysis. Malignant epithelial cells were identified using copy number variation (CNV). The evolutionary trajectory of epithelial cells to cancer cells was analyzed by cell trajectory analysis, and cancerous transitional cells were identified. The highly expressed genes in transitional cells were analyzed by the FindAllMarker of the Seurat and verified by immunohistochemistry. Results: A total of 66 969 high-quality cells were obtained in 9 major clusters: epithelial cells, T cells, B cells, fibroblasts, endothelial cells, myeloid cells, mast cells, plasmacytoid dendritic cells and nerve cells. The first 5 cell clusters were divided into 8, 6, 4, 3 and 2 subgroups, respectively. Four epithelial cell subsets (C0, C1, C2 and C5) were derived from tumor tissues and metastatic lymph nodes, and had high levels of CNV and tumor cell content. Cell trajectory analysis showed that the evolution trajectory of epithelial cells was from normal epithelial subpopulation C4 to early cancerous cell population C0, which differentiated into three major malignant cell subsets C1, C3, and C5. Epithelial cell C0 may represent the transitional cell population of carcinogenesis, and were enriched in biological processes such as epithelial-mesenchymal transformation and angiogenesis. C0 highly expressed sulforaphane (SFN) which may be related to the occurrence and development of cancer. Immunohistochemistry confirmed that SFN was highly expressed in tumor tissues and metastatic lymph nodes compared with paracancerous tissues. Conclusion: Single-cell sequencing may be used to elucidate the diversity of cells and functions in laryngeal carcinoma tissues and metastatic lymph nodes, and cell population C0 plays a key role in the evolution of cells.


Subject(s)
Aged , Carcinoma, Squamous Cell/pathology , DNA Copy Number Variations , Endothelial Cells/pathology , Humans , Laryngeal Neoplasms/pathology , Lymph Nodes/pathology , Male , Middle Aged
5.
Chinese Journal of Burns ; (6): 434-446, 2022.
Article in Chinese | WPRIM | ID: wpr-936030

ABSTRACT

Objective: To analyze the effects of transient receptor potential vanilloid type 4 (TRPV4) activation on the function and endothelial-to-mesenchymal transition (EndMT) of human umbilical vein endothelial cells (HUVECs), as well as to explore the effects of TRPV4 activation on blood perfusion and survival of rat perforator flap and the mechanism. Methods: The experimental research methods were used. The 3rd to 6th passages of HUVECs were used for experiments and divided into 0.5 μmol/L 4α-phorbol 12, 13-didecanoate (4αPDD) group, 1.0 μmol/L 4αPDD group, 3.0 μmol/L 4αPDD group, 10.0 μmol/L 4αPDD group, and phosphate buffer solution (PBS) group, which were cultivated in corresponding final molarity of 4αPDD and PBS, respectively. The cell proliferation activity at 6 and 12 h of culture was detected using cell counting kit-8 (CCK-8). Another batch of cells was acquired and divided into PBS group, 1 μmol/L 4αPDD group, and 3 μmol/L 4αPDD group, which were treated similarly as described before and then detected for cell proliferation activity at 6, 12, 24, and 48 h of culture. The residual scratch area of cells at post scratch hour (PSH) 12, 24, and 48 was detected by scratch test, and the percentage of the residual scratch area was calculated. The number of migrated cells at 24 and 48 h of culture was detected by Transwell experiment. The tube-formation assay was used to measure the number of tubular structures at 4 and 8 h of culture. The protein expressions of E-cadherin, N-cadherin, Slug, and Snail at 24 h of culture were detected by Western blotting. All the sample numbers in each group at each time point in vitro experiments were 3. A total of 36 male Sprague-Dawley rats aged 8 to 10 weeks were divided into delayed flap group, 4αPDD group, and normal saline group according to the random number table, with 12 rats in each group, and iliolumbar artery perforator flap models on the back were constructed. The flap surgical delay procedure was only performed in the rats in delayed flap group one week before the flap transfer surgery. Neither rats in 4αPDD group nor normal saline group had flap surgical delay; instead, they were intraperitoneally injected with 4αPDD and an equivalent mass of normal saline, respectively, at 10 min before, 24 h after, and 48 h after the surgery. The general state of flap was observed on post surgery day (PSD) 0 (immediately), 1, 4, and 7. The flap survival rates were assessed on PSD 7. The flap blood perfusion was detected by laser speckle contrast imaging technique on PSD 1, 4, and 7. The microvascular density in the flap's choke vessel zone was detected by immunohistochemical staining. All the sample numbers in each group at each time point in vivo experiments were 12. Data were statistically analyzed with analysis of variance for factorial design, analysis of variance for repeated measurement, one-way analysis of variance, least significant difference t test, and Bonferroni correction. Results: At 6 and 12 h of culture, there were no statistically significant differences in cell proliferation activity in the overall comparison among PBS group, 0.5 μmol/L 4αPDD group, 1.0 μmol/L 4αPDD group, 3.0 μmol/L 4αPDD group, and 10.0 μmol/L 4αPDD group (P>0.05). At 6, 12, 24, and 48 h of culture, there were no statistically significant differences in cell proliferation activity in the overall comparison among PBS group, 1 μmol/L 4αPDD group, and 3 μmol/L 4αPDD group (P>0.05). At PSH 12, the percentages of the residual scratch area of cells in 1 μmol/L 4αPDD group and 3 μmol/L 4αPDD group were close to that in PBS group (P>0.05). At PSH 24 and 48, compared with those in PBS group, the percentages of the residual scratch area of cells in 3 μmol/L 4αPDD group were significantly decreased (with t values of 2.83 and 2.79, respectively, P<0.05), while the percentages of the residual scratch area of cells in 1 μmol/L 4αPDD group showed no significant differences (P>0.05). At 24 h of culture, the number of migrated cells in 1 μmol/L 4αPDD group and 3 μmol/L 4αPDD group were close to that in PBS group (P>0.05). At 48 h of culture, the number of migrated cells in 1 μmol/L 4αPDD group and 3 μmol/L 4αPDD groups were significantly greater than that in PBS group (with t values of 6.20 and 9.59, respectively, P<0.01). At 4 h of culture, the numbers of tubular structures of cells in 1 μmol/L 4αPDD group and 3 μmol/L 4αPDD group were significantly greater than that in PBS group (with t values of 4.68 and 4.95, respectively, P<0.05 or <0.01). At 8 h of culture, the numbers of tubular structures of cells in 1 μmol/L 4αPDD and 3 μmol/L 4αPDD groups were similar to that in PBS group (P>0.05). At 24 h of culture, compared with those in PBS group, the protein expression level of E-cadherin of cells in 3 μmol/L 4αPDD group was significantly decreased (t=5.13, P<0.01), whereas there was no statistically significant difference in the protein expression level of E-cadherin of cells in 1 μmol/L 4αPDD group (P>0.05); the protein expression level of N-cadherin of cells in 3 μmol/L 4αPDD group was significantly increased (t=4.93, P<0.01), whereas there was no statistically significant difference in the protein expression level of N-cadherin of cells in 1 μmol/L 4αPDD group (P>0.05); the protein expression levels of Slug of cells in 1 μmol/L 4αPDD group and 3 μmol/L 4αPDD group were significantly increased (with t values of 3.85 and 6.52, respectively, P<0.05 or P<0.01); and the protein expression level of Snail of cells in 3 μmol/L 4αPDD group was significantly increased (t=4.08, P<0.05), whereas there was no statistically significant difference in the protein expression level of Snail of cells in 1 μmol/L 4αPDD group (P>0.05). There were no statistically significant differences in the protein expression levels of E-cadherin, N-cadherin, Slug, or Snail of cells between 1 μmol/L 4αPDD group and 3 μmol/L 4αPDD group (P>0.05). The general condition of flaps of rats in the three groups was good on PSD 0. On PSD 1, the flaps of rats in the three groups were basically similar, with bruising and swelling at the distal end. On PSD 4, the swelling of flaps of rats in the three groups subsided, and the distal end turned dark brown and necrosis occurred, with the area of necrosis in flaps of rats in normal saline group being larger than the areas in 4αPDD group and delayed flap group. On PSD 7, the necrotic areas of flaps of rats in the 3 groups were fairly stable, with the area of necrosis at the distal end of flap of rats in delayed flap group being the smallest. On PSD 7, the flap survival rates of rats in 4αPDD group ((80±13)%) and delayed flap group ((87±9)%) were similar (P>0.05), and both were significantly higher than (70±11)% in normal saline group (with t values of 2.24 and 3.65, respectively, P<0.05 or P<0.01). On PSD 1, the overall blood perfusion signals of rats in the 3 groups were basically the same, and the blood perfusion signals in the choke vessel zone were relatively strong, with a certain degree of underperfusion at the distal end. On PSD 4, the boundary between the surviving and necrotic areas of flaps of rats in the 3 groups became evident, and the blood perfusion signals in the choke vessel zone were improved, with the normal saline group's distal hypoperfused area of flap being larger than the areas in delayed flap group and 4αPDD group. On PSD 7, the blood perfusion signals of overall flap of rats had generally stabilized in the 3 groups, with the intensity of blood perfusion signal in the choke vessel zone and overall flap of rats in delayed flap group and 4αPDD group being significantly greater than that in normal saline group. On PSD 7, the microvascular density in the choke vessel zone of flap of rats in 4αPDD group and delayed flap group were similar (P>0.05), and both were significantly higher than that in normal saline group (with t values of 4.11 and 5.38, respectively, P<0.01). Conclusions: After activation, TRPV4 may promote the migration and tubular formation of human vascular endothelial cells via the EndMT pathway, leading to the enhanced blood perfusion of perforator flap and microvascular density in the choke vessel zone, and therefore increase the flap survival rate.


Subject(s)
Animals , Cadherins , Endothelial Cells , Humans , Male , Necrosis , Perforator Flap , Rats , Rats, Sprague-Dawley , Saline Solution , TRPV Cation Channels
6.
Chinese Journal of Burns ; (6): 401-407, 2022.
Article in Chinese | WPRIM | ID: wpr-936026

ABSTRACT

Microcirculatory dysfunction is an important pathophysiological change of shock. In the last decade, many researches on the mechanism of microcirculatory dysfunction have been involved in areas such as the glycocalyx damage of vascular endothelial cells, macrocirculation- microcirculation discoupling, vascular hyporeactivity, and microcirculation monitoring. Accordingly, this paper discussed how these research findings can be applied to burn patients, with the aim of alerting the clinicians to improving microcirculation, and maintaining hemodynamic coordination during the treatment of burn shock and burn septic shock. In addition, with the development of accurate and reliable microcirculation monitoring techniques, it is necessary to carry out multi-center clinical trials to reveal the clinical significance of target-oriented shock resuscitation protocol combining macrocirculatory and microcirculatory parameters.


Subject(s)
Burns/therapy , Endothelial Cells , Hemodynamics/physiology , Humans , Microcirculation/physiology , Resuscitation , Shock , Shock, Septic/therapy
7.
Chinese Journal of Burns ; (6): 266-275, 2022.
Article in Chinese | WPRIM | ID: wpr-936004

ABSTRACT

Objective: To investigate the effects of exosomes from human adipose-derived mesenchymal stem cells (ADSCs) on pulmonary vascular endothelial cells (PMVECs) injury in septic mice and its mechanism. Methods: The experimental research method was adopted. The primary ADSCs were isolated and cultured from the discarded fresh adipose tissue of 3 patients (female, 10-25 years old), who were admitted to the First Affiliated Hospital of Air Force Medical University undergoing abdominal surgery, and the cell morphology was observed by inverted phase contrast microscope on the 5th day. The expressions of CD29, CD34, CD44, CD45, CD73, and CD90 of ADSCs in the third passage were detected by flow cytometry. The third to the fifth passage of ADSCs were collected, and their exosomes from the cell supernatant were obtained by differential ultracentrifugation, and the shape, particle size, and the protein expressions of CD9, CD63, tumor susceptibility gene 101 (TSG101), and β-actin of exosomes were detected, respectively, by transmission electron microscopy, nano-particle tracking analysis and Western blotting. Twenty-four adult male BALB/c mice were adopted and were divided into normal control group, caecal ligation perforation (CLP) alone group, and CLP+ADSC-exosome group with each group of 8 according to random number table (the same grouping method below) and were treated accordingly. At 24 h after operation, tumor necrosis factor (TNF-α) and interleukin 1β (IL-1β) levels of mice serum were detected by enzyme-linked immunosorbent assay, and lung tissue morphology of mice was detected by hematoxylin-eosin and myeloperoxidase staining, and the expression of 8-hydroxy-deoxyguanosine (8-OHdG) of mouse lung cells was detected by immunofluorescence method. Primary PMVECs were obtained from 1-month-old C57 mice regardless gender by tissue block method. The expression of CD31 of PMVECs was detected by immunofluorescence and flow cytometry. The third passage of PMVECs was co-cultured with ADSCs derived exosomes for 12 h, and the phagocytosis of exosomes by PMVECs was detected by PKH26 kit. The third passage of PMVECs were adopted and were divided into blank control group, macrophage supernatant alone group, and macrophage supernatant+ADSC-exosome group, with 3 wells in each group, which were treated accordingly. After 24 h, the content of reactive oxygen species in cells was detected by flow cytometry, the expression of 8-OHdG in cells was detected by immunofluorescence, and Transwell assay was used to determine the permeability of cell monolayer. The number of samples in above were all 3. Data were statistically analyzed with one-way analysis of variance and least significant difference t test. Results: The primary ADSCs were isolated and cultured to day 5, growing densely in a spindle shape with a typical swirl-like. The percentages of CD29, CD44, CD73 and CD90 positive cells of ADSCs in the third passage were all >90%, and the percentages of CD34 and CD45 positive cells were <5%. Exosomes derived from ADSCs of the third to fifth passages showed a typical double-cavity disc-like structure with an average particle size of 103 nm, and the protein expressions of CD9, CD63 and TSG101 of exosomes were positive, while the protein expression of β-actin of exosomes was negative. At 24 h after operation, compared with those in normal control group, both the levels of TNF-α and IL-1β of mice serum in CLP alone group were significantly increased (with t values of 28.76 and 29.69, respectively, P<0.01); compared with those in CLP alone group, both the content of TNF-α and IL-1β of mice serum in CLP+ADSC-exosome group was significantly decreased (with t values of 9.90 and 4.76, respectively, P<0.05 or P<0.01). At 24 h after surgery, the pulmonary tissue structure of mice in normal control group was clear and complete without inflammatory cell infiltration; compared with those in normal control group, the pulmonary tissue edema and inflammatory cell infiltration of mice in CLP alone group were more obvious; compared with those in CLP alone group, the pulmonary tissue edema and inflammatory cell infiltration of mice in CLP+ADSC-exosome group were significantly reduced. At 24 h after operation, endothelial cells in lung tissues of mice in 3 groups showed positive expression of CD31; compared with that in normal control group, the fluorescence intensity of 8-OHdG positive cells of the lung tissues of mice in CLP alone group was significantly increased, and compared with that in CLP alone group, the fluorescence intensity of 8-OHdG positive cells in the lung tissues of mice in CLP+ADSC-exosome group was significantly decreased. The PMVECs in the 3rd passage showed CD31 positive expression by immunofluorescence, and the result of flow cytometry showed that CD31 positive cells accounted for 99.5%. At 12 h after co-culture, ADSC-derived exosomes were successfully phagocytose by PMVECs and entered its cytoplasm. At 12 h after culture of the third passage of PMVECs, compared with that in blank control group, the fluorescence intensity of reactive oxygen species of PMVECs in macrophage supernatant alone group was significantly increased (t=15.73, P<0.01); compared with that in macrophage supernatant alone group, the fluorescence intensity of reactive oxygen species of PMVECs in macrophage supernatant+ADSC-exosome group was significantly decreased (t=4.72, P<0.01). At 12 h after culture of the third passage of PMVECs, and the 8-OHdG positive fluorescence intensity of PMVECs in macrophage supernatant alone group was significantly increased; and compared with that in blank control group, the 8-OHdG positive fluorescence intensity of PMVECs in macrophage+ADSC-exosome supernatant group was between blank control group and macrophage supernatant alone group. At 12 h after culture of the third passage PMVECs, compared with that in blank control group, the permeability of PMVECs monolayer in macrophage supernatant alone group was significantly increased (t=6.34, P<0.01); compared with that in macrophage supernatant alone group, the permeability of PMVECs monolayer cells in macrophage supernatant+ADSC-exosome group was significantly decreased (t=2.93, P<0.05). Conclusions: Exosomes derived from ADSCs can ameliorate oxidative damage in mouse lung tissue, decrease the level of reactive oxygen species, 8-OHdG expression, and permeability of PMVECs induced by macrophage supernatant.


Subject(s)
Animals , Endothelial Cells/metabolism , Exosomes/metabolism , Female , Humans , Lung Injury/metabolism , Male , Mesenchymal Stem Cells/metabolism , Mice , Sepsis/pathology
8.
Chinese Journal of Burns ; (6): 119-129, 2022.
Article in Chinese | WPRIM | ID: wpr-935986

ABSTRACT

Objective: To explore the effects of P311 on the angiogenesis ability of human microvascular endothelial cell 1 (HMEC-1) in vitro and the potential molecular mechanism. Methods: The experimental research method was used. HMEC-1 was collected and divided into P311 adenovirus group and empty adenovirus group according to the random number table (the same grouping method below), which were transfected correspondingly for 48 h. The cell proliferation activity was detected using the cell counting kit 8 on 1, 3, and 5 days of culture. The residual scratch area of cells at post scratch hour 6 and 11 was detected by scratch test, and the percentage of the residual scratch area was calculated. The blood vessel formation of cells at 8 h of culture was observed by angiogenesis experiment in vitro, and the number of nodes and total length of the tubular structure were measured. The protein expressions of vascular endothelial growth factor receptor 2 (VEGFR2), phosphorylated VEGFR2 (p-VEGFR2), extracellular signal-regulated kinase 1/2 (ERK1/2), and phosphorylated ERK1/2 (p-ERK1/2) in cells were detected by Western blotting. HMEC-1 was collected and divided into P311 adenovirus+small interfering RNA (siRNA) negative control group, empty adenovirus+siRNA negative control group, P311 adenovirus+siRNA-VEGFR2 group, and empty adenovirus+siRNA-VEGFG2 group, which were treated correspondingly. The protein expressions of VEGFR2, p-VEGFR2, ERK1/2, and p-ERK1/2 in cells were detected by Western blotting at 24 h of transfection. The blood vessel formation of cells at 24 h of transfection was observed by angiogenesis experiment in vitro, and the number of nodes and total length of the tubular structure were measured. HMEC-1 was collected and divided into P311 adenovirus+dimethylsulfoxide (DMSO) group, empty adenovirus+DMSO group, P311 adenovirus+ERK1/2 inhibitor group, and empty adenovirus+ERK1/2 inhibitor group, which were treated correspondingly. The protein expressions of ERK1/2 and p-ERK1/2 in cells were detected by Western blotting at 2 h of treatment. The blood vessel formation of cells at 2 h of treatment was observed by angiogenesis experiment in vitro, and the number of nodes and total length of the tubular structure were measured. The sample number at each time point in each group was 6. Data were statistically analyzed with independent sample t test, analysis of variance for repeated measurement, one-way analysis of variance, and least significant difference test. Results: Compared with that of empty adenovirus group, the proliferation activity of cells in P311 adenovirus group did not show significant difference on 1, 3, and 5 days of culture (with t values of -0.23, -1.30, and -1.52, respectively, P>0.05). The residual scratch area percentages of cells in P311 adenovirus group were significantly reduced at post scratch hour 6 and 11 compared with those of empty adenovirus group (with t values of -2.47 and -2.62, respectively, P<0.05). At 8 h of culture, compared with those of empty adenovirus group, the number of nodes and total length of the tubular structure of cells in P311 adenovirus group were significantly increased (with t values of 4.49 and 4.78, respectively, P<0.01). At 48 h of transfection, compared with those of empty adenovirus group, the protein expressions of VEGFR2 and ERK1/2 of cells in P311 adenovirus group showed no obvious changes (P>0.05), and the protein expressions of p-VEGFR2 and p-ERK1/2 of cells in P311 adenovirus group were significantly increased (with t values of 17.27 and 16.08, P<0.01). At 24 h of transfection, the protein expressions of p-VEGFR2 and p-ERK1/2 of cells in P311 adenovirus+siRNA negative control group were significantly higher than those in empty adenovirus+siRNA negative control group (P<0.01). The protein expressions of VEGFR2, p-VEGFR2, and p-ERK1/2 of cells in P311 adenovirus+siRNA negative control group were significantly higher than those in P311 adenovirus+siRNA-VEGFR2 group (P<0.01). The protein expressions of VEGFR2 and p-ERK1/2 of cells in empty adenovirus+siRNA negative control group were significantly higher than those in empty adenovirus+siRNA-VEGFR2 group (P<0.05 or P<0.01). At 24 h of transfection, the number of nodes of the tubular structure in cells of P311 adenovirus+siRNA negative control group was 720±62, which was significantly more than 428±38 in empty adenovirus+siRNA negative control group and 364±57 in P311 adenovirus+siRNA-VEGFR2 group (with P values both <0.01). The total length of the tubular structure of cells in P311 adenovirus+siRNA negative control group was (21 241±1 139) μm, which was significantly longer than (17 005±1 156) μm in empty adenovirus+siRNA negative control group and (13 494±2 465) μm in P311 adenovirus+siRNA-VEGFR2 group (with P values both <0.01). The number of nodes of the tubular structure in cells of empty adenovirus+siRNA negative control group was significantly more than 310±75 in empty adenovirus+siRNA-VEGFR2 group (P<0.01), and the total length of the tubular structure of cells in empty adenovirus+siRNA negative control group was significantly longer than (11 600±2 776) μm in empty adenovirus+siRNA-VEGFR2 group (P<0.01). At 2 h of treatment, the protein expression of p-ERK1/2 of cells in P311 adenovirus+DMSO group was significantly higher than that in empty adenovirus+DMSO group and P311 adenovirus+ERK1/2 inhibitor group (with P values both <0.01), and the protein expression of p-ERK1/2 of cells in empty adenovirus+DMSO group was significantly higher than that in empty adenovirus+ERK1/2 inhibitor group (P<0.05). At 2 h of treatment, the number of nodes of the tubular structure in cells of P311 adenovirus+DMSO group was 726±72, which was significantly more than 421±39 in empty adenovirus+DMSO group and 365±41 in P311 adenovirus+ERK1/2 inhibitor group (with P values both <0.01). The total length of the tubular structure of cells in P311 adenovirus+DMSO group was (20 318±1 433) μm, which was significantly longer than (16 846±1 464) μm in empty adenovirus+DMSO group and (15 114±1 950) μm in P311 adenovirus+ERK1/2 inhibitor group (with P values both <0.01). The number of nodes of the tubular structure in cells of empty adenovirus+DMSO group was significantly more than 317±67 in empty adenovirus+ERK1/2 inhibitor group (P<0.01), and the total length of the tubular structure of cells in empty adenovirus+DMSO group was significantly longer than (13 188±2 306) μm in empty adenovirus+ERK1/2 inhibitor group (P<0.01). Conclusions: P311 can enhance the angiogenesis ability of HMEC-1 by activating the VEGFR2/ERK1/2 signaling pathway.


Subject(s)
Adenoviridae/genetics , Cell Line , Endothelial Cells , Endothelium, Vascular , Humans , Neovascularization, Physiologic , Nerve Tissue Proteins , Oncogene Proteins , Signal Transduction , Transfection , Vascular Endothelial Growth Factor A
9.
Article in Chinese | WPRIM | ID: wpr-935784

ABSTRACT

Pulmonary fibrosis is an irreversible interstitial lung disease characterized by lung parenchyma remodeling and collagen deposition. In recent years, the incidence and mortality of pulmonary fibrosis caused by unknown causes have risen. However, its pathogenesis is still unclear. C-X-C motif chemokine ligand 12 (CXCL12)/C-X-C chemokine receptor 4 (CXCR4)/CXCR7 signal axis plays a critical regulatory role in pulmonary fibrosis disease. In addition, the signal axis has been shown to regulate recruitment and migration of circulating fibrocytes, mesenchymal stem cells to the damage lung tissue, the migration of endothelial cells, the proliferation and differentiation of fibroblasts and endothelial cells, which further affects the occurrence and progression of pulmonary fibrosis. In this review, we summarized the pathogenesis and treatment research progress of CXCL12 and its receptor CXCR4/CXCR7 in the occurrence and progression of pulmonary fibrosis.


Subject(s)
Chemokine CXCL12 , Endothelial Cells/pathology , Humans , Ligands , Lung/pathology , Pulmonary Fibrosis/pathology , Receptors, CXCR4
10.
Chinese Journal of Pathology ; (12): 202-206, 2022.
Article in Chinese | WPRIM | ID: wpr-935505

ABSTRACT

Objective: To investigate the clinical and pathologic features, diagnosis and differential diagnosis of congenital hemangioma (CH). Methods: Forty cases of CH were diagnosed from January 2017 to December 2020 in Henan Provincial People's Hospital. The clinical and pathological and immunohistochemical data were analyzed, with review of literature. Results: There were 24 male and 16 female patients. The lesions were located in the head, neck (11 cases), limbs (14 cases), and trunk (15 cases). The clinical manifestations were congenital painless plaques or masses, the larger ones protruded on the skin surface, mostly dusky purple or bright red, with surrounding white halos. Under low magnification, the tumor was lobular and well demarcated, composed of neo-microvascular lumen of different sizes. The vascular endothelial cells were cuboidal or hobnail in appearance, forming stellar drainage vessels within the lobules. Extra-medullary hematopoiesis was seen in one case of rapidly involuting CH; there were different number of tortuous and dilated vascular lumen between the lobular structures, and some non-involuting CH cases were vascular malformations, which were devoid of lobulated structures. Immunohistochemistry showed that endothelial cells were strongly positive for CD31, CD34 and ERG, while D2-40 and GLUT-1 were negative. Conclusions: CH is a benign congenital vascular tumor with characteristic lobulated growth and abnormal blood vessels in the stroma. Pathological diagnosis often needs to be differentiated from infantile hemangioma, pyogenic granuloma, kaposiform hemangioendothelioma and vascular malformation.


Subject(s)
Endothelial Cells/pathology , Female , Hemangioendothelioma/pathology , Hemangioma/pathology , Humans , Kasabach-Merritt Syndrome/pathology , Male , Sarcoma, Kaposi/pathology , Skin Neoplasms/pathology
11.
Chinese Journal of Pathology ; (12): 196-201, 2022.
Article in Chinese | WPRIM | ID: wpr-935504

ABSTRACT

Objective: To investigate the clinicopathological and genetic characteristics of spindle cell hemangioma (SCH). Methods: The clinical, morphological and immunohistochemical features of 8 SCHs diagnosed from January 2013 to September 2021 in West China Hospital, Sichuan University, Chengdu, China were retrospectively analyzed. Hotspot mutations for IDH1 codon 132 and IDH2 codon 172 were tested in 4 SCHs and 29 other non-SCH lesions using Sanger sequencing. Results: The 8 cases occurred in patients with a wide age range, from neonate to 46 years (mean 28 years, median 32 years). Both genders were equally affected. The course of the disease spanned from half a year to 31 years. Two SCHs were recurrent tumors. All tumors involved the distal extremities (4 of foot, 2 of ankle and 2 of hand). Six cases were presented as a single lesion and 2 cases as multiple lesions. The tumor diameters were 1-5 cm. All the 8 SCHs were typically composed of cavernous vascular space and solid components consisting of slit-like vessels, spindle cells and epithelioid endothelial cells which often exhibited cytoplasmic vacuolation. These two alternating components and the vacuolated epithelioid endothelial cells were the distinctive diagnostic clues for SCH. Vascular endothelial cells including epithelioid cells in the solid areas expressed CD31 (8/8), ERG (4/4), CD34 (5/8) and D2-40 (2/3). The spindle cells expressed SMA (8/8). Neither endothelial cells nor spindle cells expressed HHV8 (0/7), Desmin (0/5) or S-100 (0/3). Mutations were revealed in 2 SCHs, with IDH1 mutation (p.R132C) and IDH2 mutation (p.R172G), respectively. The IDH1/2 gene hotspot mutations were not found in the remaining 2 SCHs or the other 29 non-SCH lesions. Simple excisions were performed for 7 cases, and partial resection for 1 case. Follow-up information was obtained in 6 cases, with follow-up time ranging from 5 to 90 months (average, 46 months). No metastasis occurred in the 6 cases. No recurrence occurred in cases treated with simple excision. The residual lesions of the patient who received partial resection were stable. Conclusions: SCH is rare and should be differentiated from a variety of benign and malignant vascular lesions. An accurate diagnosis of SCH is clinically important and can be achieved by combining clinical information and typical pathological presentation. IDH1/2 gene hotspot mutations are specific to SCH in vascular lesions. Genetic detection is helpful in the diagnosis of challenging cases.


Subject(s)
China , Endothelial Cells/pathology , Female , Hemangioma/pathology , Humans , Male , Middle Aged , Mutation , Retrospective Studies
12.
Chinese Journal of Pathology ; (12): 12-16, 2022.
Article in Chinese | WPRIM | ID: wpr-935463

ABSTRACT

Objective: To investigate the clinicopathological features, immunophenotype, ultrastructure, genetic alterations and prognosis of succinate dehydrogenase-deficient renal cell carcinoma (SDH RCC). Methods: A total of 11 SDH RCCs, diagnosed from 2010 to 2019, were selected from the Department of Pathology of Nanjing Jingling Hospital, Nanjing University School of Medicine for clinicopathologic, immunohistochemical (IHC), ultrastructural investigation and follow-up. The molecular features of seven cases were analyzed by the panel-targeted DNA next generation sequencing (NGS). Results: There were seven males and four females, with ages ranging from 24 to 62 years (mean 41.4 years, median 41 years). Microscopically, SDH RCC was mainly composed of solid and tubular structures with local cystic change. Four cases showed nested or trabecular structure distributed in a loose hypocellular connective tissue or around scar, similar to oncocytoma. The neoplastic cells demonstrated flocculent eosinophilic cytoplasm with typical intracytoplasmic vacuoles. Immunohistochemically, eight cases were negative for SDHB; three cases showed focal and weak expression, whereas normal renal tubular and vascular endothelial cells demonstrated strong cytoplasmic staining. NGS of DNA targeted-panel detected pathogenic mutations of SDHB gene in seven cases (including three cases with equivocal IHC expression of SDHB), without any mutations in other SDH related genes. There were four cases of SDHB missense mutation, one case of frameshift mutation, one case of splicing mutation, and one case of acquired stop codon mutation. Conclusions: SDH RCC is a distinct variant of RCCs with genetic tendency or with hereditary cancer syndrome. NGS is recommended to detect the related gene mutations for a definitive diagnosis. The patients should be closely followed up.


Subject(s)
Adult , Carcinoma, Renal Cell/genetics , Endothelial Cells , Female , Humans , Kidney Neoplasms/genetics , Male , Middle Aged , Prognosis , Succinate Dehydrogenase/genetics , Young Adult
13.
Chinese Journal of Burns ; (6): 616-628, 2022.
Article in Chinese | WPRIM | ID: wpr-940978

ABSTRACT

Objective: To prepare graphene oxide (GO)-containing gelatin methacrylate anhydride (GelMA) hydrogel and to investigate the effects of in situ photopolymerized GO-GelMA composite hydrogel in wound vascularization of full-thickness skin defect in mice. Methods: The experimental study method was used. The 50 μL of 0.2 mg/mL GO solution was evenly applied onto the conductive gel, and the structure and size of GO were observed under field emission scanning electron microscope after drying. Human skin fibroblasts (HSFs) were divided into 0 μg/mL GO (without GO solution, the same as below) group, 0.1 μg/mL GO group, 1.0 μg/mL GO group, 5.0 μg/mL GO group, and 10.0 μg/mL GO group treated with GO of the corresponding final mass concentration, and the absorbance value was detected using a microplate analyzer after 48 h of culture to reflect the proliferation activity of cells (n=6). HSFs and human umbilical vein vascular endothelial cells (HUVECs) were divided into 0 μg/mL GO group, 0.1 μg/mL GO group, 1.0 μg/mL GO group, and 5.0 μg/mL GO group treated with GO of the corresponding final mass concentration, and the migration rates of HSFs at 24 and 36 h after scratching (n=5) and HUVECs at 12 h after scratching (n=3) were detected by scratch test, and the level of vascular endothelial growth factor (VEGF) secreted by HSFs after 4, 6, and 8 h of culture was detected by enzyme-linked immunosorbent assay method (n=3). The prepared GO-GelMA composite hydrogels containing GO of the corresponding final mass concentration were set as 0 μg/mL GO composite hydrogel group, 0.1 μg/mL GO composite hydrogel group, 1.0 μg/mL GO composite hydrogel group, and 5.0 μg/mL GO composite hydrogel group to observe their properties before and after cross-linking, and to detect the release of GO after soaking with phosphate buffer solution for 3 and 7 d (n=3). The full-thickness skin defect wounds were made on the back of 16 6-week-old female C57BL/6 mice. The mice treated with in situ cross-linked GO-GelMA composite hydrogel containing GO of the corresponding final mass concentration were divided into 0 μg/mL GO composite hydrogel group, 0.1 μg/mL GO composite hydrogel group, 1.0 μg/mL GO composite hydrogel group, and 5.0 μg/mL GO composite hydrogel group according to the random number table, with 4 mice in each group. The general condition of wound was observed and the wound healing rate was calculated on 3, 7, and 14 d of treatment, the wound blood perfusion was detected by laser Doppler flowmetry on 3, 7, and 14 d of treatment and the mean perfusion unit (MPU) ratio was calculated, and the wound vascularization on 7 d of treatment was observed after hematoxylin-eosin staining and the vascular density was calculated (n=3). The wound tissue of mice in 0 μg/mL GO composite hydrogel group and 0.1 μg/mL GO composite hydrogel group on 7 d of treatment was collected to observe the relationship between the distribution of GO and neovascularization by hematoxylin-eosin staining (n=3) and the expression of VEGF by immunohistochemical staining. Data were statistically analyzed with analysis of variance for repeated measurement, one-way analysis of variance, and Tukey's method. Results: GO had a multilayered lamellar structure with the width of about 20 μm and the length of about 50 μm. The absorbance value of HSFs in 10.0 μg/mL GO group was significantly lower than that in 0 μg/mL GO group after 48 h of culture (q=7.64, P<0.01). At 24 h after scratching, the migration rates of HSFs were similar in the four groups (P>0.05); at 36 h after scratching, the migration rate of HSFs in 0.1 μg/mL GO group was significantly higher than that in 0 μg/mL GO group, 1.0 μg/mL GO group, and 5.0 μg/mL GO group (with q values of 7.48, 10.81, and 10.20, respectively, P<0.01). At 12 h after scratching, the migration rate of HUVECs in 0.1 μg/mL GO group was significantly higher than that in 0 μg/mL GO group, 1.0 μg/mL GO group, and 5.0 μg/mL GO group (with q values of 7.11, 8.99, and 14.92, respectively, P<0.01), and the migration rate of HUVECs in 5.0 μg/mL GO group was significantly lower than that in 0 μg/mL GO group and 1.0 μg/mL GO group (with q values of 7.81 and 5.33, respectively, P<0.05 or P<0.01 ). At 4 and 6 h of culture, the VEGF expressions of HSFs in the four groups were similar (P>0.05); at 8 h of culture, the VEGF expression of HSFs in 0.1 μg/mL GO group was significantly higher than that in 0 μg/mL GO group and 5.0 μg/mL GO group (with q values of 4.75 and 4.48, respectively, P<0.05). The GO-GelMA composite hydrogels in the four groups were all red liquid before cross-linking, which turned to light yellow gel after cross-linking, with no significant difference in fluidity. The GO in the GO-GelMA composite hydrogel of 0 μg/mL GO composite hydrogel group had no release of GO at all time points; the GO in the GO-GelMA composite hydrogels of the other 3 groups was partially released on 3 d of soaking, and all the GO was released on 7 d of soaking. From 3 to 14 d of treatment, the wounds of mice in the 4 groups were covered with hydrogel dressings, kept moist, and gradually healed. On 3, 7, and 14 d of treatment, the wound healing rates of mice in the four groups were similar (P>0.05). On 3 d of treatment, the MPU ratio of wound of mice in 0.1 μg/mL GO composite hydrogel group was significantly higher than that in 0 μg/mL GO composite hydrogel group, 1.0 μg/mL GO composite hydrogel group, and 5.0 μg/mL GO composite hydrogel group (with q values of 10.70, 11.83, and 10.65, respectively, P<0.05 or P<0.01). On 7 and 14 d of treatment, the MPU ratios of wound of mice in the four groups were similar (P>0.05). The MPU ratio of wound of mice in 0.1 μg/mL GO composite hydrogel group on 7 d of treatment was significantly lower than that on 3 d of treatment (q=14.38, P<0.05), and that on 14 d of treatment was significantly lower than that on 7 d of treatment (q=27.78, P<0.01). On 7 d of treatment, the neovascular density of wound of mice on 7 d of treatment was 120.7±4.1 per 200 times of visual field, which was significantly higher than 61.7±1.3, 77.7±10.2, and 99.0±7.9 per 200 times of visual field in 0 μg/mL GO composite hydrogel group, 1.0 μg/mL GO composite hydrogel group, and 5.0 μg/mL GO composite hydrogel group (with q values of 12.88, 7.79, and 6.70, respectively, P<0.01), and the neovascular density of wound of mice in 1.0 μg/mL GO composite hydrogel group and 5.0 μg/mL GO composite hydrogel group was significantly higher than that in 0 μg/mL GO composite hydrogel group (with q values of 5.10 and 6.19, respectively, P<0.05). On 7 d of treatment, cluster of new blood vessels in wound of mice in 0.1 μg/mL GO composite hydrogel group was significantly more than that in 0 μg/mL GO composite hydrogel group, and the new blood vessels were clustered near the GO; a large amount of VEGF was expressed in wound of mice in 0.1 μg/mL GO composite hydrogel group in the distribution area of GO and new blood vessels. Conclusions: GO with mass concentration lower than 10.0 μg/mL had no adverse effect on proliferation activity of HSFs, and GO of 0.1 μg/mL can promote the migration of HSFs and HUVECs, and can promote the secretion of VEGF in HSFs. In situ photopolymerized of GO-GelMA composite hydrogel dressing can promote the wound neovascularization of full-thickness skin defect in mice and increase wound blood perfusion in the early stage, with GO showing an enrichment effect on angiogenesis, and the mechanism may be related to the role of GO in promoting the secretion of VEGF by wound cells.


Subject(s)
Anhydrides , Animals , Endothelial Cells , Eosine Yellowish-(YS) , Female , Gelatin/pharmacology , Graphite , Hematoxylin , Humans , Hydrogels/pharmacology , Methacrylates , Mice , Mice, Inbred C57BL , Neovascularization, Pathologic , Skin Abnormalities , Vascular Endothelial Growth Factor A
14.
Frontiers of Medicine ; (4): 467-482, 2022.
Article in English | WPRIM | ID: wpr-939878

ABSTRACT

Cabozantinib, mainly targeting cMet and vascular endothelial growth factor receptor 2, is the second-line treatment for patients with advanced hepatocellular carcinoma (HCC). However, the lower response rate and resistance limit its enduring clinical benefit. In this study, we found that cMet-low HCC cells showed primary resistance to cMet inhibitors, and the combination of cabozantinib and mammalian target of rapamycin (mTOR) inhibitor, rapamycin, exhibited a synergistic inhibitory effect on the in vitro cell proliferation and in vivo tumor growth of these cells. Mechanically, the combination of rapamycin with cabozantinib resulted in the remarkable inhibition of AKT, extracellular signal-regulated protein kinases, mTOR, and common downstream signal molecules of receptor tyrosine kinases; decreased cyclin D1 expression; and induced cell cycle arrest. Meanwhile, rapamycin enhanced the inhibitory effects of cabozantinib on the migration and tubule formation of human umbilical vascular endothelial cells and human growth factor-induced invasion of cMet inhibitor-resistant HCC cells under hypoxia condition. These effects were further validated in xenograft models. In conclusion, our findings uncover a potential combination therapy of cabozantinib and rapamycin to combat cabozantinib-resistant HCC.


Subject(s)
Anilides/pharmacology , Animals , Carcinoma, Hepatocellular/drug therapy , Cell Line, Tumor , Cell Proliferation , Endothelial Cells/metabolism , Humans , Liver Neoplasms/drug therapy , Pyridines/pharmacology , Sirolimus/pharmacology , Xenograft Model Antitumor Assays
15.
Article in English | WPRIM | ID: wpr-939857

ABSTRACT

Pulp loss is accompanied by the functional impairment of defense, sensory, and nutrition supply. The approach based on endogenous stem cells is a potential strategy for pulp regeneration. However, endogenous stem cell sources, exogenous regenerative signals, and neovascularization are major difficulties for pulp regeneration based on endogenous stem cells. Therefore, the purpose of our research is to seek an effective cytokines delivery strategy and bioactive materials to reestablish an ideal regenerative microenvironment for pulp regeneration. In in vitro study, we investigated the effects of Wnt3a, transforming growth factor-beta 1, and bone morphogenetic protein 7 (BMP7) on human dental pulp stem cells (h-DPSCs) and human umbilical vein endothelial cells. 2D and 3D culture systems based on collagen gel, matrigel, and gelatin methacryloyl were fabricated to evaluate the morphology and viability of h-DPSCs. In in vivo study, an ectopic nude mouse model and an in situ beagle dog model were established to investigate the possibility of pulp regeneration by implanting collagen gel loading BMP7. We concluded that BMP7 promoted the migration and odontogenic differentiation of h-DPSCs and vessel formation. Collagen gel maintained the cell adhesion, cell spreading, and cell viability of h-DPSCs in 2D or 3D culture. The transplantation of collagen gel loading BMP7 induced vascularized pulp-like tissue regeneration in vivo. The injectable approach based on collagen gel loading BMP7 might exert promising therapeutic application in endogenous pulp regeneration.


Subject(s)
Animals , Bone Morphogenetic Protein 7/pharmacology , Cell Differentiation , Cells, Cultured , Collagen/pharmacology , Dental Pulp , Dogs , Endothelial Cells , Gelatin , Humans , Methacrylates , Mice , Regeneration , Stem Cells
16.
Article in English | WPRIM | ID: wpr-939777

ABSTRACT

OBJECTIVE@#To screen the active components from Fuzheng Huayu Recipe (FZHY) and redesign a new recipe composed of the active components, and validate the effect of active components formulation from FZHY against liver fibrosis.@*METHODS@#Thirty-two components from FZHY were evaluated for their activities against liver fibrosis respectively, with 6 kinds of cell models in vitro, including oxidative stressed hepatocyte in L-02, hypoxia injured/proliferative hepatic sinusoidal endothelial cells in SK-HEP-1 and human hepatic sinusoidal endothelial cells (HHSEC), and activated hepatic stellate cell in LX-2. The comprehensive activity of each component against liver fibrosis was scored according to the role of original herbs in FZHY and cell functions in fibrogenesis. Totally 7 active components were selected and combined with equal proportion to form a novel active components formulation (ACF). The efficacy of ACF on liver fibrosis were evaluated on activation of LX-2 and proliferation of HHSEC in vitro and in liver fibrosis model mice induced by dimethylnitrosamine (DMN). Totally 72 mice were divided into 6 groups using a random number table, including normal, high-dose ACF control (20 µ mol/L × 7 components/kg body weight), model, low-, medium-, high-dose ACF groups (5, 10, 20 µ mol/L × 7 components/kg body weight, respectively). Hematoxylin eosin and Sirius red stainings were used to observe inflammation and fibrosis change of liver tissue; scanning electron microscopy (SEM) and transmission electron microscopy (TEM) were utilized to observe the effect of ACF on ultrastructure of hepatic sinusoids.@*RESULTS@#Fifteen components from FZHY showed higher scores for their activity on against liver fibrosis. Among them, 7 components including tanshinone II A, salvianolic acid B, cordycepin, amygdalin, quercetin, protopanaxatriol, and schizandrin B were recombined with equal proportions to form ACF. ACF at 1,2, 4 µ mol/L showed strong inhibitory effects on activation of LX-2 and proliferation of HHSEC in vitro (all P<0.01). Compared with the model group, ACF attenuated liver collagen deposition, improved sinusoidal capillarization in a dose-dependent manner (all P<0.05).@*CONCLUSION@#ACF exerts a satisfactory effect against experimental liver fibrosis and attenuates sinusoidal capillarization, which warrant a further research and development for herbal components formulation on liver fibrosis.


Subject(s)
Animals , Body Weight , Drugs, Chinese Herbal/adverse effects , Endothelial Cells , Liver , Liver Cirrhosis/drug therapy , Mice
17.
Article in English | WPRIM | ID: wpr-922576

ABSTRACT

OBJECTIVE@#To investigate the protective effects and underlying mechanisms of Xuebijing Injection (XBJ) on the lung endothelial barrier in hydrogen sulfide (H@*METHODS@#Sprague-Dawley rats were exposed to H@*RESULTS@#The morphological investigation showed that XBJ attenuated H@*CONCLUSIONS@#XBJ ameliorated H


Subject(s)
Animals , Claudin-5 , Drugs, Chinese Herbal , Endothelial Cells , Hydrogen Sulfide , Phosphatidylinositol 3-Kinases , Rats , Rats, Sprague-Dawley , Respiratory Distress Syndrome, Newborn/drug therapy
18.
Article in English | WPRIM | ID: wpr-929151

ABSTRACT

The significant clinical feature of bisphosphonate-related osteonecrosis of the jaw (BRONJ) is the exposure of the necrotic jaw. Other clinical manifestations include jaw pain, swelling, abscess, and skin fistula, which seriously affect the patients' life, and there is no radical cure. Thus, new methods need to be found to prevent the occurrence of BRONJ. Here, a novel nanoparticle, tFNA-KLT, was successfully synthesized by us, in which the nanoparticle tetrahedral framework nucleic acid (tFNA) was used for carrying angiogenic peptide, KLT, and then further enhanced angiogenesis. TFNA-KLT possessed the same characteristics as tFNA, such as simple synthesis, stable structure, and good biocompatibility. Meanwhile, tFNA enhanced the stability of KLT and carried more KLT to interact with endothelial cells. First, it was confirmed that tFNA-KLT had the superior angiogenic ability to tFNA and KLT both in vitro and in vivo. Then we apply tFNA-KLT to the prevention of BRONJ. The results showed that tFNA-KLT can effectively prevent the occurrence of BRONJ by accelerating angiogenesis. In summary, the prepared novel nanoparticle, tFNA-KLT, was firstly synthesized by us. It was also firstly confirmed by us that tFNA-KLT significantly enhanced angiogenesis and can effectively prevent the occurrence of BRONJ by accelerating angiogenesis, thus providing a new avenue for the prevention of BRONJ and a new choice for therapeutic angiogenesis.


Subject(s)
Angiogenic Proteins/therapeutic use , Bisphosphonate-Associated Osteonecrosis of the Jaw/prevention & control , Endothelial Cells , Humans , Nanoparticles , Nucleic Acids/therapeutic use
19.
Article in Chinese | WPRIM | ID: wpr-928777

ABSTRACT

Lung cancer is one of the malignant tumors with the highest morbidity and mortality in China. Therefore, the research on the treatment of lung cancer is also deepening. At present, there are mainly systemic chemotherapy, targeted therapy for positive driver genes, the application of immune checkpoint inhibitors, anti-tumor angiogenesis therapy and the combination of the different treatment methods mentioned above. The use of these regimens has significantly improved the prognosis of most lung cancer patients, but the prognosis of patients with advanced lung cancer remains unsatisfactory. Recently, more and more attention has been paid to the study of tumor microenvironment (TME). TME consists of immune cells, fibroblasts, vascular endothelial cells and other cellular components as well as related cytokines, which is the basis for the survival and development of tumor cells. As an important immune cell of TME, tumor-associated macrophages (TAMs) refer to macrophages infiltrating in tumor tissues, which can promote tumor cell proliferation, induce tumor immune tolerance, stimulate tumor angiogenesis, and increase the invasion and metastasis ability of tumor cells. Therefore, targeting TAMs has become a hot topic in lung cancer immunotherapy. In this review, the sources, phenotypes, mechanisms of TAMs in lung cancer, as well as future therapeutic targets of TAMs were reviewed to provide reference for optimal treatment of lung cancer.
.


Subject(s)
Endothelial Cells , Humans , Immunotherapy , Lung Neoplasms/therapy , Tumor Microenvironment , Tumor-Associated Macrophages
20.
Article in Chinese | WPRIM | ID: wpr-927959

ABSTRACT

Previously, Carthami Flos and Lepidii Semen(CF-LS) drug pair has been proved effective in inhibiting myocardial fibrosis(MF) by blunting the activity of cardiac fibroblasts. The present study explored the underlying mechanism of CF-LS in inhibiting MF by improving the cardiac microenvironment based on network pharmacology combined with experimental verification. Active compounds and potential targets of CF-LS were retrieved from Traditional Chinese Medicine Systems Pharmacology Database and Analysis Platform(TCMSP), and the potential targets of MF were obtained from GeneCards, Online Mendelian Inheritance in Man(OMIM), and Pharmacogenetics and Pharmacogenomics Knowledge Base(PharmGKB). The "active component-target-MF" network was constructed and analyzed by Cytoscape 3.8.1. The protein-protein interaction(PPI) network was constructed by STRING. The Gene Ontology(GO) biological process enrichment analysis was performed by CluoGO plug-in. Kyoto Encyclopedia of Genes and Genomes(KEGG) signaling pathway enrichment analysis was performed by R 4.0.2 and Funrich. Subsequently, the inhibitory effect of CF-LS on MF was investigated based on angiotensin Ⅱ(Ang Ⅱ)-induced MF rats. RT-PCR and ELISA were used to verify the effect of CF-LS on the targets of signaling pathways related to vascular endothelial cells predicted by the network pharmacology. Thirty-one active components and 204 potential targets of CF-LS, 4 671 MF-related targets, and 174 common targets were obtained. The network analysis showed that the key targets of CF-LS against MF included RAC-alpha serine/threonine-protein kinase(AKT1), transcription factor AP-1(JUN), mitogen-activated protein kinase 1(MAPK1), cellular tumor antigen p53(TP53), transcription factor p65(RELA), and mitogen-activated protein kinase 8(MAPK8). Biological processes mainly involved regulation of blood vessel diameter, regulation of blood vessel endothelial cell migration, cell death in response to oxidative stress, etc. Advanced glycation end products(AGE)-receptor for advanced glycation end products(RAGE) signaling pathway, phosphoinositide 3-kinase(PI3 K)-serine/threonine protein kinase(AKT) signaling pathway, hypoxia-inducible factor-1(HIF-1) signaling pathway, integrin signaling pathway, transforming growth factor-β(TGF-β) signaling pathway, etc. were involved in signaling pathway enrichment. Literature retrieval confirmed that some of these signaling pathways were closely related to vascular endothelial cells, including AGE-RAGE, PI3 K-AKT, HIF-1α, p53, the transcription factor activator protein-1(AP-1), integrin, p38 MAPK, and TGF-β. Animal experiments showed that CF-LS inhibited MF induced by Ang Ⅱ in rats by suppressing the expression of RAGE, HIF-1α, integrin β6, and TGF-β1. The inhibitory effect of CF-LS on MF has the characteristics of multiple components, multiple targets, and multiple pathways. CF-LS can inhibit MF by regulating the activity of vascular endothelial cells in the cardiac microenvironment.


Subject(s)
Animal Experimentation , Animals , Drugs, Chinese Herbal/pharmacology , Endothelial Cells , Fibrosis , Medicine, Chinese Traditional , Molecular Docking Simulation , Network Pharmacology , Phosphatidylinositol 3-Kinases , Rats , Semen
SELECTION OF CITATIONS
SEARCH DETAIL