Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 20 de 5.196
Filter
1.
Int. j. morphol ; 42(1): 197-204, feb. 2024. ilus, graf
Article in English | LILACS | ID: biblio-1528841

ABSTRACT

SUMMARY: Obesity-related pathophysiologies such as insulin resistance and the metabolic syndrome show a markedly increased risk for type 2 diabetes and atherosclerotic cardiovascular disease. This risk appears to be linked to alterations in adipose tissue function, leading to chronic inflammation and the dysregulation of adipocyte-derived factors. Brassica rapa have been used in traditional medicine for the treatment of several diseases, including diabetes. This study aimed to investigate the effect of nutritional stress induced by a high-fat and high-sucrose diet on the pathophysiology of visceral adipose tissue and the therapeutic effect of Brassica rapa in male Wistar rats. We subjected experimental rats to a high-fat (10 %) high-sucrose (20 %)/per day for 11 months and treated them for 20 days with aqueous extract Br (AEBr) at 200 mg/kg at the end of the experiment. At the time of sacrifice, we monitored plasma and tissue biochemical parameters as well as the morpho-histopathology of visceral adipose tissue. We found AEBr corrected metabolic parameters and inflammatory markers in homogenized visceral adipose tissue and reduced hypertrophy, hyperplasia, and lipid droplets. These results suggest that AEBr enhances anti-diabetic, anti-inflammatory and a protective effect on adipose tissue morphology in type 2 diabetes and obesity.


La fisiopatología relacionadas con la obesidad, como la resistencia a la insulina y el síndrome metabólico, muestran un riesgo notablemente mayor de diabetes tipo 2 y enfermedad cardiovascular aterosclerótica. Este riesgo parece estar relacionado con alteraciones en la función del tejido adiposo, lo que lleva a una inflamación crónica y a la desregulación de los factores derivados de los adipocitos. Brassica rapa se ha utilizado en la medicina tradicional para el tratamiento de varias enfermedades, incluida la diabetes. Este estudio tuvo como objetivo investigar el efecto del estrés nutricional inducido por una dieta rica en grasas y sacarosa sobre la fisiopatología del tejido adiposo visceral y el efecto terapéutico de Brassica rapa en ratas Wistar macho. Sometimos a ratas experimentales a una dieta rica en grasas (10 %) y alta en sacarosa (20 %)/por día durante 11 meses y las tratamos durante 20 días con extracto acuoso de Br (AEBr) a 200 mg/kg al final del experimento. En el momento del sacrificio, monitoreamos los parámetros bioquímicos plasmáticos y tisulares, así como la morfohistopatología del tejido adiposo visceral. Encontramos parámetros metabólicos corregidos por AEBr y marcadores inflamatorios en tejido adiposo visceral homogeneizado y reducción de hipertrofia, hiperplasia y gotitas de lípidos. Estos resultados sugieren que AEBr mejora el efecto antidiabético, antiinflamatorio y protector sobre la morfología del tejido adiposo en la diabetes tipo 2 y la obesidad.


Subject(s)
Animals , Male , Rats , Plant Extracts/administration & dosage , Adipose Tissue/drug effects , Brassica rapa/chemistry , Insulin Resistance , Plant Extracts/therapeutic use , Rats, Wistar , Diabetes Mellitus, Type 2/drug therapy , Intra-Abdominal Fat , Glucose/toxicity , Inflammation , Lipids/toxicity , Obesity/drug therapy
2.
Article in Chinese | WPRIM | ID: wpr-1009893

ABSTRACT

OBJECTIVES@#To explore the relationship of triglyceride-glucose index (TyG), triglyceride-glucose-body mass index (TyG-BMI), and triglyceride-glucose-waist circumference index (TyG-WC) with blood pressure abnormalities in adolescents, providing theoretical basis for the prevention and control of hypertension in adolescents.@*METHODS@#A stratified cluster sampling method was used to select 1 572 adolescents aged 12 to 18 years in Yinchuan City for questionnaire surveys, physical measurements, and laboratory tests. Logistic regression analysis and restricted cubic spline analysis were employed to examine the relationship of TyG, TyG-BMI, and TyG-WC with blood pressure abnormalities in adolescents.@*RESULTS@#Multivariable logistic regression analysis revealed that after adjusting for confounding factors, the groups with the highest quartile of TyG, TyG-BMI, and TyG-WC had 1.48 times (95%CI: 1.07-2.04), 3.71 times (95%CI: 2.67-5.15), and 4.07 times (95%CI: 2.89-5.73) higher risks of blood pressure abnormalities compared to the groups with the lowest quartile, respectively. Moreover, as the levels of TyG, TyG-BMI, and TyG-WC increased, the risk of blood pressure abnormalities gradually increased (P<0.05). A non-linear dose-response relationship was observed between TyG-BMI and the risk of blood pressure abnormalities (P overall trend<0.001, P non-linearity=0.002). Linear dose-response relationships were found between TyG and the risk of blood pressure abnormalities (P overall trend<0.001, P non-linearit =0.232), and between TyG-WC and the risk of blood pressure abnormalities (P overall trend<0.001, P non-linearity=0.224).@*CONCLUSIONS@#Higher levels of TyG and its derivatives are associated with an increased risk of blood pressure abnormalities in adolescents, with linear or non-linear dose-response relationships.


Subject(s)
Adolescent , Humans , Blood Pressure , Body Mass Index , Hypertension/etiology , Glucose , Triglycerides
3.
Rev. méd. Chile ; 151(1): 81-100, feb. 2023. ilus, tab
Article in Spanish | LILACS | ID: biblio-1515424

ABSTRACT

Intermittent fasting (IF) has gained increasing scientific and general attention. Most studied forms of IF include alternate-day fasting, modified alternate-day fasting, and time-restricted eating (TRE). Several cardiometabolic effects of IF have been described in animal models and, to a lesser extent, in humans. This review analyzes the impact of IF on weight loss, glucose metabolism, blood pressure, and lipid profile in humans. A literature search was conducted in the Pubmed/Medline, Scopus, and Google Scholar databases. Controlled observational or interventional studies in humans, published between January 2000 and June 2021, were included. Studies comparing IF versus religious fasting were not included. Most studies indicate that the different types of IF have significant benefits on body composition, inducing weight loss and reducing fat mass. Changes in cardiometabolic parameters show more divergent results. In general, a decrease in fasting glucose and insulin levels is observed, together with an improved lipid profile associated with cardiovascular risk. High heterogeneity in study designs was observed, particularly in studies with TRE, small sample sizes, and short-term interventions. Current evidence shows that IF confers a range of cardiometabolic benefits in humans. Weight loss, improvement of glucose homeostasis and lipid profile, are observed in the three types of IF protocols evaluated.


Subject(s)
Humans , Animals , Cardiovascular Diseases/prevention & control , Intermittent Fasting , Weight Loss , Fasting/physiology , Glucose/metabolism , Lipids
4.
Biol. Res ; 56: 5-5, 2023. ilus, graf
Article in English | LILACS | ID: biblio-1429906

ABSTRACT

BACKGROUND: Alpha-kinase 1 (ALPK1) is a master regulator in inflammation and has been proved to promote renal fibrosis by promoting the production of IL-1ß in diabetic nephropathy (DN) mice. Pyroptosis is involved in high glucose (HG)-induced tubular cells injury, characterized by activation of Gasdermin D (GSDMD) and the release of IL-1ß and IL-18, resulting in inflammatory injury in DN. It is reasonable to assume that ALPK1 is involved in pyroptosis-related tubular injury in DN. However, the mechanism remains poorly defined. METHODS: Immunohistochemistry (IHC) staining was performed to detect the expression of pyroptosis- and fibrosis-related proteins in renal sections of DN patients and DN mice. DN models were induced through injection of streptozotocin combined with a high-fat diet. Protein levels of ALPK1, NF-κB, Caspase-1, GSDMD, IL-1ß, IL-18 and α-SMA were detected by Western blot. HK-2 cells treated with high-glucose (HG) served as an in vitro model. ALPK1 small interfering RNA (siRNA) was transfected into HK-2 cells to down-regulate ALPK1. The pyroptosis rates were determined by flow cytometry. The concentrations of IL-1ß and IL-18 were evaluated by ELISA kits. Immunofluorescence staining was used to observe translocation of NF-κB and GSDMD. RESULTS: The heat map of differentially expressed genes showed that ALPK1, Caspase-1 and GSDMD were upregulated in the DN group. The expression levels of ALPK1, Caspase-1, GSDMD and CD68 were increased in renal biopsy tissues of DN patients by IHC. ALPK1expression and CD68+ macrophages were positively correlated with tubular injury in DN patients. Western blot analysis showed increased expressions of ALPK1, phospho-NF-κB P65, GSDMD-NT, and IL-1ß in renal tissues of DN mice and HK-2 cells, accompanied with increased renal fibrosis-related proteins (FN, α-SMA) and macrophages infiltration in interstitial areas. Inhibition of ALPK1 attenuated HG-induced upregulation expressions of NF-κB, pyroptosis-related proteins Caspase-1, GSDMD-NT, IL-1ß, IL-18, α-SMA, and pyroptosis level in HK-2 cells. Also, the intensity and nuclear translocation of NF-κB and membranous translocation of GSDMD were ameliorated in HG-treated HK-2 cells after treatment with ALPK1 siRNA. CONCLUSIONS: Our data suggest that ALPK1/NF-κB pathway initiated canonical caspase-1-GSDMD pyroptosis pathway, resulting in tubular injury and interstitial inflammation of DN.


Subject(s)
Animals , Mice , Diabetes Mellitus , Diabetic Nephropathies , Fibrosis , NF-kappa B/metabolism , Caspases , Interleukin-18 , RNA, Small Interfering , Pyroptosis , Glucose , Inflammation
5.
Arch. pediatr. Urug ; 94(2): e214, 2023. tab
Article in Spanish | LILACS, UY-BNMED, BNUY | ID: biblio-1520114

ABSTRACT

Introducción: la hipoglicemia neonatal es un trastorno metabólico frecuente en neonatos, con mayor incidencia en aquellos con factores de riesgo como ser hijos de madre diabética, pequeño para la edad gestacional y pretérmino tardíos. Material y métodos: se realizó un ensayo analítico aleatorizado, controlado por placebo para evaluar la eficacia de la administración de gel de dextrosa al 40% para la prevención de hipoglicemia neonatal en esta población. Se reclutaron un total de 120 pacientes. Resultados: se encontró una menor incidencia de hipoglicemia neonatal al compararla con la incidencia reportada en la literatura internacional. No se encontraron diferencias estadísticamente significativas en cuanto al número de ingresos a áreas de internación para tratamiento de hipoglicemia ni en la alimentación a pecho directo exclusivo al alta entre los grupos. Conclusiones: el gel de dextrosa al 40% en recién nacidos podría ser un tratamiento alternativo para profilaxis de hipoglicemia en recién nacidos con factores de riesgo.


Introduction: neonatal hypoglycemia is a frequent metabolic disorder in neonates, with a higher incidence in those with risk factors such as being children of diabetic mothers, small for gestational age, and late preterm. Methodology: a randomized, placebo controlled analytic trial was conducted to evaluate the efficacy of 40% dextrose gel administration for the prevention of neonatal hypoglycemia in this population. A total of 120 patients were recruited. Results: a lower incidence of neonatal hypoglycemia was found when compared to the incidence reported in the international literature. No statistically significant differences were found in terms of the number of admissions to inpatient areas for hypoglycemia treatment or exclusive direct breastfeeding at discharge between the groups. Conclusions: 40% dextrose gel in newborns could be an alternative treatment for hypoglycemia prophylaxis in newborns with risk factors.


Introdução: a hipoglicemia neonatal é um disturbio metabólico comum em neonatos, com maior incidencia naqueles que apresentam fatores de risco, tais como filhos de mães diabéticas, pequenos para a idade gestacional e prematuros tardios. Metodologia: foi realizado um ensaio analítico randomizado e controlado por placebo para avaliar a eficácia da administração de gel de dextrose a 40% para prevenção de hipoglicemia neonatal nesta população. Um total de 120 pacientes foram recrutados. Resultados: foi encontrada menor incidência de hipoglicemia neonatal quando comparada com a incidência relatada na literatura internacional. Não foram encontradas diferenças estatisticamente significativas relativas ao número de internações em áreas de internação para tratamento de hipoglicemia ou aleitamento materno direto exclusivo para descarga entre os grupos. Conclusões: o gel de dextrose a 40% em recém nascidos pode ser uma alternativa de tratamento para profilaxia de hipoglicemia em recém nascidos com fatores de risco.


Subject(s)
Humans , Male , Female , Infant, Newborn , Congenital Hyperinsulinism/prevention & control , Glucose/therapeutic use , Double-Blind Method , Risk Factors , Congenital Hyperinsulinism/blood
6.
Article in English | WPRIM | ID: wpr-1010974

ABSTRACT

In this study, we presented the isolation and characterization of eight novel seco-guaianolide sesquiterpenoids (1-8) and two known guaianolide derivatives (9 and 10), from the aerial part of Achillea alpina L.. Compounds 1-3 were identified as guaianolides bearing an oxygen insertion at the 2, 3 position, while compounds 4-8 belonged to a group of special 3-nor guaianolide sesquiterpenoids. The structural elucidation of 1-8, including their absolute configurations, were accomplished by a combination of spectroscopic data analysis and quantum electronic circular dichroism (ECD) calculations. To evaluate the potential antidiabetic activity of compounds 1-10, we investigated their effects on glucose consumption in palmitic acid (PA)-mediated HepG2-insulin resistance (IR) cells. Among the tested compounds, compound 7 demonstrated the most pronounced ability to reverse IR. Moreover, a mechanistic investigation revealed that compound 7 exerted its antidiabetic effect by reducing the production of the pro-inflammatory cytokine IL-1β, which was achieved through the suppression of the NLRP3 pathway.


Subject(s)
Humans , Hypoglycemic Agents/pharmacology , Circular Dichroism , Cytokines , Glucose , Hep G2 Cells , Insulin Resistance
7.
Chinese Critical Care Medicine ; (12): 1298-1303, 2023.
Article in Chinese | WPRIM | ID: wpr-1010943

ABSTRACT

OBJECTIVE@#To investigate the clinical effect of Shenfu injection combined with glucocorticoid in the treatment of acute left heart failure complicated with bronchospasm.@*METHODS@#A prospective study was conducted.Ninety patients with acute left heart failure complicated with bronchospasm admitted to Huai'an Second People's Hospital from January 2021 to July 2022 were selected and divided into conventional treatment group, hormone therapy group and combined treatment group according to random number table method, with 30 cases in each group. All patients in the 3 groups received basic Western medicine treatment. On this basis, the conventional treatment group was given 0.25-0.50 g aminophylline injection plus 5% glucose injection or 0.9% sodium chloride injection (diabetes patients) 100 mL slow intravenous infusion, 1-2 times a day. In the hormone treatment group, 1 mg of budesonide suspension for inhalation was diluted to 2 mL by 0.9% sodium chloride injection, twice a day, and applied until 48 hours after the pulmonary wheezing disappeared. The combined treatment group was given glucocorticoid combined with Shenfu injection 80 mL plus 5% glucose injection or 0.9% sodium chloride injection (diabetes patients) 250 mL intravenously, once a day. All treated for 1 week. The general data, traditional Chinese medicine (TCM) syndrome score, TCM syndrone efficacy index, acute left heart failure efficacy, bronchospasm efficacy, systolic blood pressure (SBP), mean arterial pressure (MAP), serum N-terminal pro-brain natriuretic peptide (NT-proBNP) level and safety of the 3 groups were compared. The patients were followed up for 6 months, and the mortality and re-hospitalization rate of the 3 groups were recorded.@*RESULTS@#Among the 90 patients, a total of 83 patients completed the study, excluding the cases dropped due to death and other reasons. There were 29 cases in the combined treatment group, 25 cases in the hormone therapy group and 29 cases in the conventional treatment group. There were no significant differences in age, gender, course of disease, and previous history (history of diabetes, history of hypertension, history of hyperlipidemia) among the 3 groups. Therefore, they were comparable. The difference of TCM syndrome score before and after treatment, TCM syndrome efficacy index of combined treatment group and hormone therapy group were higher than those of conventional treatment group [difference of TCM syndrome score: 15.14±5.74, 13.24±5.75 vs. 10.62±5.87, TCM syndrome efficacy index: (67.84±14.31)%, (59.94±14.26)% vs. (48.92±16.74)%, all P < 0.05], and the difference of TCM syndrome score and TCM syndrome efficacy index of combined treatment group were higher than those of hormone treatment group (both P < 0.05). The total effective rate of acute left heart failure and bronchospasm in the combined treatment group was significantly higher than that in the conventional treatment group (total effective rate of acute left heart failure: 96.55% vs. 75.86%, total effective rate of bronchospasm: 93.10% vs. 65.52%, both P < 0.05). The difference of serum NT-proBNP before and after treatment in combination therapy group and hormone therapy group was significantly higher than that in conventional treatment group (ng/L: 7 922.86±5 220.31, 7 314.92±4 450.28 vs. 4 644.79±3 388.23, all P < 0.05), and the difference of serum NT-proBNP before and after treatment in the combined treatment group was significantly higher than that in the hormone treatment group (P < 0.05). There were no significant differences in SBP difference, MAP difference, mortality and re-hospitalization rate among the 3 groups. No adverse reactions occurred in the 3 groups during treatment.@*CONCLUSIONS@#Shenfu injection combined with glucocorticoid is effective in the treatment of patients with acute left heart failure complicated with bronchospasm. It is superior to glucocorticoid and aminophylline in relieving bronchospasm, reducing NT-proBNP level and improving total effective rate, and has good prognosis and safety.


Subject(s)
Humans , Glucocorticoids/therapeutic use , Bronchial Spasm , Prospective Studies , Aminophylline/therapeutic use , Sodium Chloride/therapeutic use , Natriuretic Peptide, Brain , Peptide Fragments , Heart Failure/drug therapy , Diabetes Mellitus , Glucose
8.
Chinese Critical Care Medicine ; (12): 1262-1267, 2023.
Article in Chinese | WPRIM | ID: wpr-1010937

ABSTRACT

OBJECTIVE@#To investigate the association between the glucose-to-lymphocyte ratio (GLR) and prognosis of patients with sepsis-associated acute kidney injury (SA-AKI).@*METHODS@#Based on the Medical Information Mart for Intensive Care-IV (MIMIC-IV), SA-AKI patients aged ≥ 18 years were selected. According to the tertiles of GLR, the patients were divided into GLR1 group (GLR ≤ 4.97×10-9 mmol), GLR2 group (4.97×10-9 mmol < GLR < 9.75×10-9 mmol) and GLR3 group (GLR ≥ 9.75×10-9 mmol). Patients with SA-AKI were divided into survival group and death group according to whether they survived 28 days after admission. The patient's gender, age, vital signs, laboratory test results, comorbidities, sequential organ failure assessment (SOFA), acute physiology score III (APS III) score and treatment measures were extracted from the database. Kaplan-Meier survival analysis was used to make the survival curves of patients with SA-AKI at 28 days, 90 days, 180 days and 1 year. Multivariate Logistic regression analysis model was used to explore the independent risk factors of 28-day mortality in patients with SA-AKI. Receiver operator characteristic curve (ROC curve) was used to analyze the predictive efficacy of GLR for the prognosis of patients with SA-AKI.@*RESULTS@#A total of 1 524 patients with SA-AKI were included, with a median age of 68.28 (58.96, 77.24) years old, including 612 females (40.16%) and 912 males (59.84%). There were 507 patients in the GLR1 group, 509 patients in the GLR2 group and 508 patients in the GLR3 group. There were 1 181 patients in the 28-day survival group and 343 patients in the death group. Grouping according to GLR tertiles showed that with the increase of GLR, the 28-day, 90-day, 180-day and 1-year mortality of SA-AKI patients gradually increased (28-day mortality were 11.64%, 22.00%, 33.86%, respectively; 90-day mortality were 15.98%, 26.72%, 40.55%, respectively; 180-day mortality were 17.16%, 28.29% and 41.73%, and the 1-year mortality were 17.95%, 29.27% and 42.72%, respectively, all P < 0.01). According to 28-day survival status, the GLR of the death group was significantly higher than that of the survival group [×10-9 mmol: 9.81 (5.75, 20.01) vs. 6.44 (3.64, 10.78), P < 0.01]. Multivariate Logistic regression analysis showed that GLR was an independent risk factor for 28-day mortality in patients with SA-AKI [when GLR was used as a continuous variable: odds ratio (OR) = 1.065, 95% confidence interval (95%CI) was 1.045-1.085, P < 0.001; when GLR was used as a categorical variable, compared with GLR1 group: GLR2 group OR = 1.782, 95%CI was 1.200-2.647, P = 0.004; GLR3 group OR = 2.727, 95%CI was 1.857-4.005, P < 0.001]. ROC curve analysis showed that the area under the ROC curve (AUC) of GLR for predicting 28-day mortality in patients with SA-AKI was 0.674, when the optimal cut-off value was 8.769×10-9 mmol, the sensitivity was 57.1% and the specificity was 67.1%. The predictive performance was improved when GLR was combined with APS III score and SOFA score, and the AUC was 0.806, the sensitivity was 74.6% and the specificity was 71.4%.@*CONCLUSIONS@#GLR is an independent risk factor of 28-day mortality in patients with SA-AKI, and high GLR is associated with poor prognosis in patients with SA-AKI.


Subject(s)
Male , Female , Humans , Blood Glucose , Glucose , ROC Curve , Prognosis , Sepsis/diagnosis , Acute Kidney Injury , Retrospective Studies , Intensive Care Units
9.
Chinese Critical Care Medicine ; (12): 1147-1149, 2023.
Article in Chinese | WPRIM | ID: wpr-1010917

ABSTRACT

Stress induced hyperglycemia is the body's protect response against strong (patho-physiological and/or psychological) stress, sometimes the blood glucose level is too high due to out of the body's adjustment. Renal glucose threshold (about 9 mmol/L) is a window of glucose leak from capillary to interstitial tissue. It is important to keep blood glucose level < 9 mmol/L, for reducing vascular sclerosis as well as organs hypoperfusion, meanwhile pay attention to preventing more dangerous hypoglycemia. Glucose, as the main energy substrate, should be daily supply and its metabolism should be monitored. We used to talk "nutritional support". Support is conform the physiological ability of host, but therapy is to coordinate and change pathophysiology. So, nutritional support is not equal to nutritional therapy. For critical ill patients, we need to emphasize "nutritional therapy", i.e, do not give nutritional treatment without metabolic monitoring, make up for deficiencies and avoid metabolites overloading, rational adjustment to protect and coordinate organs function.


Subject(s)
Humans , Blood Glucose/metabolism , Critical Illness/therapy , Hyperglycemia/therapy , Nutritional Support , Glucose
10.
Article in English | WPRIM | ID: wpr-1010692

ABSTRACT

Oral potentially malignant disorders (OPMDs) are precursors of oral squamous cell carcinoma (OSCC). Deregulated cellular energy metabolism is a critical hallmark of cancer cells. Peroxisome proliferator-activated receptor-gamma coactivator-1 alpha (PGC1α) plays vital role in mitochondrial energy metabolism. However, the molecular mechanism of PGC1α on OPMDs progression is less unclear. Therefore, we investigated the effects of knockdown PGC1α on human dysplastic oral keratinocytes (DOKs) comprehensively, including cell proliferation, cell cycle, apoptosis, xenograft tumor, mitochondrial DNA (mtDNA), mitochondrial electron transport chain complexes (ETC), reactive oxygen species (ROS), oxygen consumption rate (OCR), extracellular acidification rate (ECAR), and glucose uptake. We found that knockdown PGC1α significantly inhibited the proliferation of DOKs in vitro and tumor growth in vivo, induced S-phase arrest, and suppressed PI3K/Akt signaling pathway without affecting cell apoptosis. Mechanistically, downregulated of PGC1α decreased mtDNA, ETC, and OCR, while enhancing ROS, glucose uptake, ECAR, and glycolysis by regulating lactate dehydrogenase A (LDHA). Moreover, SR18292 (an inhibitor of PGC1α) induced oxidative phosphorylation dysfunction of DOKs and declined DOK xenograft tumor progression. Thus, our work suggests that PGC1α plays a crucial role in cell proliferation by reprograming energy metabolism and interfering with energy metabolism, acting as a potential therapeutic target for OPMDs.


Subject(s)
Humans , Carcinoma, Squamous Cell/metabolism , Cell Proliferation , DNA, Mitochondrial , Energy Metabolism , Glucose , Mouth Neoplasms/metabolism , Peroxisome Proliferator-Activated Receptor Gamma Coactivator 1-alpha/metabolism , Phosphatidylinositol 3-Kinases , Reactive Oxygen Species
11.
Article in English | WPRIM | ID: wpr-1010586

ABSTRACT

With the development of modern sequencing techniques and bioinformatics, genomes that were once thought to be noncoding have been found to encode abundant functional micropeptides (miPs), a kind of small polypeptides. Although miPs are difficult to analyze and identify, a number of studies have begun to focus on them. More and more miPs have been revealed as essential for energy metabolism homeostasis, immune regulation, and tumor growth and development. Many reports have shown that miPs are especially essential for regulating glucose and lipid metabolism and regulating mitochondrial function. MiPs are also involved in the progression of related diseases. This paper reviews the sources and identification of miPs, as well as the functional significance of miPs for metabolism-related diseases, with the aim of revealing their potential clinical applications.


Subject(s)
Humans , Open Reading Frames , Peptides , Glucose , Genome , Metabolic Diseases
12.
Chinese Journal of Biotechnology ; (12): 4927-4938, 2023.
Article in Chinese | WPRIM | ID: wpr-1008069

ABSTRACT

In order to investigate the enzyme production mechanism of yak rumen-derived anaerobic fungus Orpinomyces sp. YF3 under the induction of different carbon sources, anaerobic culture tubes were used for in vitro fermentation. 8 g/L of glucose (Glu), filter paper (Flp) and avicel (Avi) were respectively added to 10 mL of basic culture medium as the sole carbon source. The activity of fiber-degrading enzyme and the concentration of volatile fatty acid in the fermentation liquid were detected, and the enzyme producing mechanism of Orpinomyces sp. YF3 was explored by transcriptomics. It was found that, in glucose-induced fermentation solution, the activities of carboxymethyl cellulase, microcrystalline cellulase, filter paper enzyme, xylanase and the proportion of acetate were significantly increased (P < 0.05), the proportion of propionate, butyrate, isobutyrate were significantly decreased (P < 0.05). The results of transcriptome analysis showed that there were 5 949 differentially expressed genes (DEGs) between the Glu group and the Flp group, 10 970 DEGs between the Glu group and the Avi group, and 6 057 DEGs between the Flp group and the Avi group. It was found that the DEGs associated with fiber degrading enzymes were significantly up-regulated in the Glu group. Gene ontology (GO) function enrichment analysis identified that DEGs were mainly associated with the xylan catabolic process, hemicellulose metabolic process, β-glucan metabolic process, cellulase activity, endo-1,4-β-xylanase activity, cell wall polysaccharide metabolic process, carbohydrate catabolic process, glucan catabolic process and carbohydrate metabolic process. Moreover, the differentially expressed pathways associated with fiber degrading enzymes enriched by Kyoto Encyclopedia of Genes and Genomes (KEGG) pathway analysis were mainly starch and sucrose metabolic pathways and other glycan degradation pathways. In conclusion, Orpinomyces sp. YF3 with glucose as carbon source substrate significantly increased the activity of cellulose degrading enzyme and the proportion of acetate, decreased the proportion of propionate, butyrate and isobutyrate. Furthermore, the degradation ability and energy utilization efficiency of fungus in the presence of glucose were improved by means of regulating the expression of cellulose degrading enzyme gene and participating in starch and sucrose metabolism pathway, and other glycan degradation pathways, which provides a theoretical basis for the application of Orpinomyces sp. YF3 in practical production and facilitates the application of Orpinomyces sp. YF3 in the future.


Subject(s)
Animals , Cattle , Neocallimastigales/metabolism , Anaerobiosis , Rumen/microbiology , Propionates/metabolism , Isobutyrates/metabolism , Cellulose/metabolism , Fungi , Starch/metabolism , Glucose/metabolism , Acetates , Sucrose/metabolism , Cellulases , Cellulase
13.
Chinese Journal of Biotechnology ; (12): 4694-4707, 2023.
Article in Chinese | WPRIM | ID: wpr-1008051

ABSTRACT

β-glucosidase has important applications in food, pharmaceutics, biomass conversion and other fields, exploring β-glucosidase with strong adaptability and excellent properties thus has received extensive interest. In this study, a novel glucosidase from the GH1 family derived from Cuniculiplasma divulgatum was cloned, expressed, and characterized, aiming to find a better β-glucosidase. The amino acid sequences of GH1 family glucosidase derived from C. divulgatum were obtained from the NCBI database, and a recombinant plasmid pET-30a(+)-CdBglA was constructed. The recombinant protein was induced to express in Escherichia coli BL21(DE3). The enzymatic properties of the purified CdBglA were studied. The molecular weight of the recombinant CdBglA was 56.0 kDa. The optimum pH and temperature were 5.5 and 55 ℃, respectively. The enzyme showed good pH stability, 92.33% of the initial activity could be retained when treated under pH 5.5-11.0 for 1 h. When pNPG was used as a substrate, the kinetic parameters Km, Vmax and Kcat/Km were 0.81 mmol, 291.99 μmol/(mg·min), and 387.50 s-1 mmol-1, respectively. 90.33% of the initial enzyme activity could be retained when CdBglA was placed with various heavy metal ions at a final concentration of 5 mmol/L. The enzyme activity was increased by 28.67% under 15% ethanol solution, remained unchanged under 20% ethanol, and 43.68% of the enzyme activity could still be retained under 30% ethanol. The enzyme has an obvious activation effect at 0-1.5 mol/L NaCl and can tolerate 0.8 mol/L glucose. In conclusion, CdBglA is an acidic and mesophilic enzyme with broad pH stability and strong tolerance to most metal ions, organic solvents, NaCl and glucose. These characteristics may facilitate future theoretical research and industrial production.


Subject(s)
beta-Glucosidase , Sodium Chloride , Temperature , Glucose , Ethanol/chemistry , Ions , Hydrogen-Ion Concentration , Enzyme Stability , Substrate Specificity
14.
Chinese Journal of Biotechnology ; (12): 3863-3875, 2023.
Article in Chinese | WPRIM | ID: wpr-1007999

ABSTRACT

Reducing lactate accumulation has always been a goal of the mammalian cell biotechnology industry. When animal cells are cultured in vitro, the accumulation of lactate is mainly the combined result of two metabolic pathways. On one hand, glucose generates lactate under the function of lactate dehydrogenase A (LDHA); on the other hand, lactate can be oxidized to pyruvate by LDHB or LDHC and re-enter the TCA cycle. This study comprehensively evaluated the effects of LDH manipulation on the growth, metabolism and human adenovirus (HAdV) production of human embryonic kidney 293 (HEK-293) cells, providing a theoretical basis for engineering the lactate metabolism in mammalian cells. By knocking out ldha gene and overexpression of ldhb and ldhc genes, the metabolic efficiency of HEK-293 cells was effectively improved, and HAdV production was significantly increased. Compared with the control cell, LDH manipulation promoted cell growth, reduced the accumulation of lactate and ammonia, significantly enhanced the efficiency of substrate and energy metabolism of cells, and significantly increased the HAdV production capacity of HEK-293 cells. Among these LDH manipulation measures, ldhc gene overexpression performed the best, with the maximum cell density increased by about 38.7%. The yield of lactate to glucose and ammonia to glutamine decreased by 33.8% and 63.3%, respectively; and HAdV titer increased by at least 16 times. In addition, the ATP production rate, ATP/O2 ratio, ATP/ADP ratio and NADH content of the modified cell lines were increased to varying degrees, and the energy metabolic efficiency was significantly improved.


Subject(s)
Animals , Humans , L-Lactate Dehydrogenase/genetics , Lactic Acid , Adenoviruses, Human , Ammonia , HEK293 Cells , Glucose/metabolism , Adenosine Triphosphate/metabolism , Kidney/metabolism , Mammals/metabolism
15.
Chinese Journal of Biotechnology ; (12): 3747-3756, 2023.
Article in Chinese | WPRIM | ID: wpr-1007990

ABSTRACT

To develop a novel glucose-lowering biomedicine with potential benefits in the treatment of type 2 diabetes, we used the 10rolGLP-1 gene previously constructed in our laboratory and the CRISPR/Cas9 genome editing technique to create an engineered Saccharomyces cerevisiae strain. The gRNA expression vector pYES2-gRNA, the donor vector pNK1-L-PGK-10rolGLP-1-R and the Cas9 expression vector pGADT7-Cas9 were constructed and co-transformed into S. cerevisiae INVSc1 strain, with the PGK-10rolGLP-1 expressing unit specifically knocked in through homologous recombination. Finally, an S. cerevisiae strain highly expressing the 10rolGLP-1 with glucose-lowering activity was obtained. SDS-PAGE and Western blotting results confirmed that two recombinant strains of S. cerevisiae stably expressed the 10rolGLP-1 and exhibited the desired glucose-lowering property when orally administered to mice. Hypoglycemic experiment results showed that the recombinant hypoglycemic S. cerevisiae strain offered a highly hypoglycemic effect on the diabetic mouse model, and the blood glucose decline was adagio, which can avoid the dangerous consequences caused by rapid decline in blood glucose. Moreover, the body weight and other symptoms such as polyuria also improved significantly, indicating that the orally hypoglycemic S. cerevisiae strain that we constructed may develop into an effective, safe, economic, practical and ideal functional food for type 2 diabetes mellitus treatment.


Subject(s)
Mice , Animals , Saccharomyces cerevisiae/metabolism , CRISPR-Cas Systems , Glucose/metabolism , Blood Glucose/metabolism , Diabetes Mellitus, Type 2/therapy , Hypoglycemic Agents/metabolism
16.
Chinese Journal of Biotechnology ; (12): 3406-3420, 2023.
Article in Chinese | WPRIM | ID: wpr-1007966

ABSTRACT

Soluble cello-oligosaccharide with 2-6 oligosaccharide units is a kind of oligosaccharide with various biological functions, which can promote the proliferation of intestinal probiotics such as Bifidobacteria and Lactobacillus paracei. Therefore, it has a regulatory effect on human intestinal microbiota. In this study, a Cc 01 strain was constructed by expressing cellodextrin phosphorylase (CDP) in Escherichia coli. By combining with a previously constructed COS 01 strain, a three-enzyme cascade reaction system based on strains COS 01 and Cc 01 was developed, which can convert glucose and sucrose into cello-oligosaccharide. After optimization, the final titer of soluble cello-oligosaccharides with 2-6 oligosaccharide units reached 97 g/L, with a purity of about 97%. It contained cellobiose (16.8 wt%), cellotriose (49.8 wt%), cellotetrose (16.4 wt%), cellopentaose (11.5 wt%) and cellohexose (5.5 wt%). When using inulin, xylo-oligosaccharide and fructooligosaccharide as the control substrate, the biomass (OD600) of Lactobacillus casei (WSH 004), Lactobacillus paracei (WSH 005) and Lactobacillus acidophilus (WSH 006) on cello-oligosaccharides was about 2 folds higher than that of the control. This study demonstrated the efficient synthesis of cello-oligosaccharides by a three-enzyme cascade reaction and demonstrated that the synthesized cello-oligosaccharides was capable of promoting intestinal microbial proliferation.


Subject(s)
Humans , Oligosaccharides , Biomass , Escherichia coli/genetics , Gastrointestinal Microbiome , Glucose
17.
Article in English | WPRIM | ID: wpr-1007935

ABSTRACT

OBJECTIVES@#This study aims to determine the effects of low-level laser (LLL) on the expression of interleukin-6 (IL-6), tumor necrosis factor (TNF)-α, osteoprotegerin (OPG), and receptor activator of nuclear factor-κB ligand (RANKL) in human periodontal ligament cells (HPDLCs) stimulated by high glucose; and identify the molecular mechanism of LLL therapy in the regulation of periodontal inflammation and bone remodeling during orthodontic treatment in diabetic patients.@*METHODS@#HPDLCs were cultured in vitro to simulate orthodontic after loading and irradiated with LLL therapy. The cultured cells were randomly divided into four groups: low glucose Dulbecco's modification of Eagle's medium (DMEM)+stress stimulation (group A), high glucose DMEM+stress stimulation (group B), hypoglycemic DMEM+LLL therapy+stress stimulation (group C), and hyperglycemic DMEM+LLL therapy+stress stimulation (group D). Groups C and D were further divided into C1 and D1 (energy density: 3.75 J/cm2) and C2 and D2 (energy density: 5.625 J/cm2). Cells in groups A, B, C, and D were irradiated by LLL before irradiation. At 0, 12, 24, 48, and 72 h, the supernatants of the cell cultures were extracted at regular intervals, and the protein expression levels of IL-6, TNF-α, OPG, and RANKL were detected by enzyme-linked immunosorbent assay.@*RESULTS@#1) The levels of IL-6 and TNF-α secreted by HPDLCs increased gradually with time under static pressure stimulation. After 12 h, the levels of IL-6 and TNF-α secreted by HPDLCs in group A were significantly higher than those in groups B, C1, and C2 (P<0.05), which in group B were significantly higher than those in groups D1, and D2 (P<0.01). 2) The OPG protein concentration showed an upward trend before 24 h and a downward trend thereafter. The RANKL protein concentration increased, whereas the OPG/RANKL ratio decreased with time. Significant differen-ces in OPG, RANKL, and OPG/RANKL ratio were found among group A and groups B, C1, C2 as well as group B and groups D1, D2 (P<0.05).@*CONCLUSIONS@#1) In the high glucose+stress stimulation environment, the concentrations of IL-6 and TNF-α secreted by HPDLCs increased with time, the expression of OPG decreased, the expression of RANKL increased, and the ratio of OPG/RANKL decreased. As such, high glucose environment can promote bone resorption. After LLL therapy, the levels of IL-6 and TNF-α decreased, indicating that LLL therapy could antagonize the increase in the levels of inflammatory factors induced by high glucose environment and upregulate the expression of OPG in human HPDLCs, downregulation of RANKL expression in HPDLCs resulted in the upregulation of the ratio of OPG/RANKL and reversed the imbalance of bone metabolism induced by high glucose levels. 2) The decrease in inflammatory factors and the regulation of bone metabolism in HPDLCs were enhanced with increasing laser energy density within 3.75-5.625 J/cm2. Hence, the ability of LLL therapy to modulate bone remodeling increases with increasing dose.


Subject(s)
Humans , Osteoprotegerin , Tumor Necrosis Factor-alpha/metabolism , Interleukin-6/pharmacology , RANK Ligand/pharmacology , Periodontal Ligament/metabolism , Lasers , Glucose/pharmacology
18.
Acta Physiologica Sinica ; (6): 767-778, 2023.
Article in Chinese | WPRIM | ID: wpr-1007789

ABSTRACT

As a member of the apolipoprotein C (ApoC) family with a relatively high content, ApoC3 plays a major role in the regulation of triglyceride metabolism, and plays an important role in the occurrence and development of cardiovascular diseases, glucose and lipid metabolism disorders. Nonalcoholic fatty liver disease (NAFLD) refers to the accumulation of a large amount of fat in the liver in the absence of a history of chronic alcohol consumption or other damage to the liver. A large number of previous studies have shown that there is a correlation between the gene polymorphism and high expression of ApoC3 and NAFLD. In the context of hypertriglyceridemia (HTG), this article reviews the relationship between ApoC3 and NAFLD, glucose and lipid metabolism, and islet β cell function, showing that ApoC3 can not only inhibit lipoprotein lipase (LPL) and hepatic lipase (HL) activity, delay the decomposition of triglyceride in plasma to maintain the body's energy metabolism during fasting, but also be significantly increased under insulin resistance, prompting the liver to secrete a large amount of very low-density lipoprotein (VLDL) to induce HTG. Therefore, targeting and inhibiting ApoC3 might become a new approach to treat HTG. Increasing evidence suggests that ApoC3 does not appear to be an independent "contributor" to NAFLD. Similarly, our previous studies have shown that ApoC3 is not an independent factor triggering islet β cell dysfunction in ApoC3 transgenic mice, but in a state of excess nutrition, HTG triggered by ApoC3 high expression may exacerbate the effects of hyperglycemia and insulin resistance on islet β cell function, and the underlying mechanism remains to be further discussed.


Subject(s)
Humans , Animals , Apolipoprotein C-III/genetics , Non-alcoholic Fatty Liver Disease/pathology , Glucose/metabolism , Lipid Metabolism , Hypertriglyceridemia/metabolism , Islets of Langerhans/metabolism
19.
Chinese Acupuncture & Moxibustion ; (12): 1425-1430, 2023.
Article in English | WPRIM | ID: wpr-1007504

ABSTRACT

OBJECTIVES@#To observe the effects on the glucose-lipid metabolism and the expression of zinc-α2-glycoprotein (ZAG) and glucose transporter 4 (GLUT4) in the femoral quadriceps and adipose tissue after electroacupuncture (EA) at "Pishu" (BL 20), "Weiwanxiashu" (EX-B 3), "Zusanli" (ST 36) and "Sanyinjiao" (SP 6) in the rats with diabetes mellitus type 2 (T2DM), so as to explore the effect mechanism of EA in treatment of T2DM.@*METHODS@#Twelve ZDF male rats were fed with high-sugar and high-fat fodder, Purina #5008 for 4 weeks to induce T2DM model. After successfully modeled, the rats were randomly divided into a model group and an EA group, with 6 rats in each one. Additionally, 6 ZL male rats of the same months age were collected as the blank group. The rats in the EA group were treated with EA at bilateral "Pishu" (BL 20), "Weiwanxiashu" (EX-B 3), "Zusanli" (ST 36) and "Sanyinjiao" (SP 6), with continuous wave, 15 Hz in frequency, and 2 mA in intensity. The electric stimulation lasted 20 min each time. EA was delivered once daily, 6 times a week for 4 weeks. Separately, the levels of fasting blood glucose (FBG) was measured before modeling, before and after intervention, and the body mass of each rat was weighted before and after intervention. After intervention, the levels of the total cholesterol (TC), triacylglycerol (TG) and free fatty acid (FFA) in serum were detected using enzyme colorimetric method; and the levels of the serum insulin (INS) and ZAG were detected by ELISA. Besides, the insulin sensitivity index (HOMA-ISI) was calculated. With Western blot technique adopted, the protein expressions of ZAG and GLUT4 in the femoral quadriceps and adipose tissue were determined.@*RESULTS@#After intervention, compared with the blank group, the levels of FBG and body mass, and the levels of serum TC, TG, FFA and INS increased (P<0.01), while HOMA-ISI decreased (P<0.01); the level of ZAG in the serum and the protein expressions of ZAG and GLUT4 in the femoral quadriceps and adipose tissue dropped (P<0.01) in the model group. In the EA group, compared with the model group, the levels of FBG and body mass, and the levels of serum TC, TG, FFA and INS were reduced (P<0.01), and HOMA-ISI increased (P<0.01); the level of ZAG in the serum and the protein expressions of ZAG and GLUT4 in the femoral quadriceps and adipose tissue increased (P<0.01, P<0.05).@*CONCLUSIONS@#Electroacupuncture can effectively regulate glucose-lipid metabolism, improve insulin resistance and sensitivity in the rats with T2DM, which is associated with the modulation of ZAG and GLUT4 expression in the skeletal muscle and adipose tissue.


Subject(s)
Rats , Male , Animals , Glucose/metabolism , Electroacupuncture , Rats, Sprague-Dawley , Diabetes Mellitus, Type 2/therapy , Lipid Metabolism , Triglycerides , Adipose Tissue/metabolism , Acupuncture Points
20.
Article in English | WPRIM | ID: wpr-1009935

ABSTRACT

A 2-year-old boy was admitted to Shanghai Children's Medical Center, Shanghai Jiao Tong University School of Medicine in Nov 30th, 2018, due to polydipsia, polyphagia, polyuria accompanied with increased glucose levels for more than 2 weeks. He presented with symmetrical short stature [height 81 cm (-2.2 SD), weight 9.8 kg (-2.1 SD), body mass index 14.94 kg/m2 (P10-P15)], and with no special facial or physical features. Laboratory results showed that the glycated hemoglobin A1c was 14%, the fasting C-peptide was 0.3 ng/mL, and the islet autoantibodies were all negative. Oral glucose tolerance test showed significant increases in both fasting and postprandial glucose, but partial islet functions remained (post-load C-peptide increased 1.43 times compared to baseline). A heterozygous variant c.1366C>T (p.R456C) was detected in GATA6 gene, thereby the boy was diagnosed with a specific type of diabetes mellitus. The boy had congenital heart disease and suffered from transient hyperosmolar hyperglycemia after a patent ductus arteriosus surgery at 11 months of age. Insulin replacement therapy was prescribed, but without regular follow-up thereafter. The latest follow-up was about 3.5 years after the diagnosis of diabetes when the child was 5 years and 11 months old, with the fasting blood glucose of 6.0-10.0 mmol/L, and the 2 h postprandial glucose of 17.0-20.0 mmol/L.


Subject(s)
Male , Child , Humans , Child, Preschool , Infant , Diabetes Mellitus, Type 2/complications , Mutation, Missense , C-Peptide/genetics , China , Insulin/genetics , Glucose , Blood Glucose , GATA6 Transcription Factor/genetics
SELECTION OF CITATIONS
SEARCH DETAIL