Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 20 de 6.122
Filter
1.
Braz. j. biol ; 84: e255235, 2024. tab, graf
Article in English | LILACS, VETINDEX | ID: biblio-1355897

ABSTRACT

Abstract In soybean breeding program, continuous selection pressure on traits response to yield created a genetic bottleneck for improvements of soybean through hybridization breeding technique. Therefore an initiative was taken to developed high yielding soybean variety applying mutation breeding techniques at Plant Breeding Division, Bangladesh Institute of Nuclear Agriculture (BINA), Bangladesh. Locally available popular cultivar BARI Soybean-5 was used as a parent material and subjected to five different doses of Gamma ray using Co60. In respect to seed yield and yield attributing characters, twelve true breed mutants were selected from M4 generation. High values of heritability and genetic advance with high genotypic coefficient of variance (GCV) for plant height, branch number and pod number were considered as favorable attributes for soybean improvement that ensure expected yield. The mutant SBM-18 obtained from 250Gy provided stable yield performance at diversified environments. It provided maximum seed yield of 3056 kg ha-1 with highest number of pods plant-1 (56). The National Seed Board of Bangladesh (NSB) eventually approved SBM-18 and registered it as a new soybean variety named 'Binasoybean-5' for large-scale planting because of its superior stability in various agro-ecological zones and consistent yield performance.


Resumo No programa de melhoramento da soja, a pressão pela seleção contínua para a resposta das características de rendimento criou um gargalo genético para melhorias da soja por meio da técnica de melhoramento por hibridação. Portanto, foi desenvolvida uma variedade de soja de alto rendimento, aplicando técnicas de reprodução por mutação, na Divisão de Melhoramento de Plantas, no Instituto de Agricultura Nuclear de Bangladesh (BINA), em Bangladesh. A cultivar popular BARI Soybean-5, disponível localmente, foi usada como material original e submetida a cinco doses diferentes de raios gama usando Co60. Em relação ao rendimento de sementes e às características de atribuição de rendimento, 12 mutantes genuínos foram selecionados a partir da geração M4. Altos valores de herdabilidade e avanço genético com alto coeficiente de variância genotípico (GCV) para altura da planta, número de ramos e número de vagens foram considerados atributos favoráveis ​​ao melhoramento da soja, garantindo, assim, a produtividade esperada. O mutante SBM-18, obtido a partir de 250Gy, proporcionou desempenho de rendimento estável em ambientes diversificados e produtividade máxima de sementes de 3.056 kg ha-1 com o maior número de vagens planta-1 (56). O Conselho Nacional de Sementes de Bangladesh (NSB) finalmente aprovou o SBM-18 e o registrou como uma nova variedade de soja, chamada 'Binasoybean-5', para plantio em larga escala por causa de sua estabilidade superior em várias zonas agroecológicas e desempenho de rendimento consistente.


Subject(s)
Soybeans/growth & development , Soybeans/genetics , Phenotype , Bangladesh , Plant Breeding , Genotype , Mutation
2.
Braz. j. biol ; 84: e256923, 2024. tab, ilus
Article in English | LILACS, VETINDEX | ID: biblio-1360219

ABSTRACT

Naturally occurring mutations in morphogenetic protein 15 (BMP15) are associated with decreased ovulation rate (OR), litter size (LS), and sterility. It is of a great interest to elucidate BMP15 gene in Cholistani sheep breed to uplift socio-economic status and the knowledge of Cholistani sheep breeding in Southern Punjab, Pakistan. In our study, a total of 50 infertile Cholistani sheep aged between 2-6 years and having no blood relation were screened for BMP15 mutations. For this purpose, a high-quality DNA was extracted from the blood of sheep followed by primer designing, Polymerase Chain Reaction (PCR) amplification, DNA sequencing, and in silico analyses. Out of total 50 samples, 9 samples including case 1 (T3), case 2 (T8), case 3 (T17), case 4 (T22), case 5 (T25), case 6 (T33), case 7 (T40), case 8 (T44), and case 9 (T47) were found positive for a variety of already reported and novel BMP15 mutations. Further in silico analyses of the observed mutations have shown the functional impact of these mutations on different characteristics (molecular weight, theoretical PI, estimated half-life, instability index, sub-cellular localization, and 3D confirmation) of the encoded proteins, possibly altering the normal functionality. In a nutshell, findings of this study have confirmed the possible essential role of the BMP15 mutations in the infertility of the Cholistani sheep.


Mutações de ocorrência natural na proteína morfogenética 15 (BMP15) estão associadas à diminuição da taxa de ovulação (TO), tamanho da ninhada (TN) e esterilidade. Estudar a BMP15 na raça Cholistani para elevar o status socioeconômico e o conhecimento da criação de ovinos Cholistani no sul de Punjab, Paquistão. Em nosso estudo, 50 ovelhas Cholistani inférteis sem parentesco sanguíneo foram rastreadas para mutações BMP15. Para tanto, um DNA de alta qualidade foi extraído do sangue dessas ovelhas, seguido de concepção do primer, amplificação da reação em cadeia da polimerase (PCR), sequenciamento de DNA e análises in silico. Do total de 50 amostras, 9, incluindo caso 1 (T3), caso 2 (T8), caso 3 (T17), caso 4 (T22), caso 5 (T25), caso 6 (T33), caso 7 (T40), caso 8 (T44) e caso 9 (T47), foram consideradas positivas para uma variedade de mutações BMP15 novas e já relatadas. Mais análises in silico das mutações observadas mostraram o impacto funcional dessas mutações em diferentes características (peso molecular, PI teórico, meia-vida estimada, índice de instabilidade, localização subcelular e confirmação 3D) das proteínas codificadas, possivelmente alterando a funcionalidade normal. Nossos achados confirmaram o possível papel essencial das mutações BMP15 na infertilidade de ovelhas Cholistani.


Subject(s)
Animals , Sheep , Infertility , Mutation/genetics
3.
Braz. j. biol ; 83: e246040, 2023. tab, graf
Article in English | LILACS, VETINDEX | ID: biblio-1285610

ABSTRACT

Abstract Autosomal recessive primary microcephaly (MCPH) is a neurodevelopmental disorder characterized by a congenitally reduced head circumference (-3 to -5 SD) and non-progressive intellectual disability. The objective of the study was to evaluate pathogenic mutations in the ASPM gene to understand etiology and molecular mechanism of primary microcephaly. Blood samples were collected from various families across different remote areas of Pakistan from February 2017 to May 2019 who were identified to be affected with primary microcephaly. DNA extraction was performed using the salting-out method; the quality and quantity of DNA were evaluated using spectrophotometry and 1% agarose gel electrophoresis, respectively in University of the Punjab. Mutation analysis was performed by whole exome sequencing from the Cologne Center for Genomics, University of Cologne. Sanger sequencing was done in University of the Punjab to confirm the pathogenic nature of mutation. A novel 4-bp deletion mutation c.3877_3880delGAGA was detected in exon 17 of the ASPM gene in two primary microcephaly affected families (A and B), which resulted in a frame shift mutation in the gene followed by truncated protein synthesis (p.Glu1293Lysfs*10), as well as the loss of the calmodulin-binding IQ domain and the Armadillo-like domain in the ASPM protein. Using the in-silico tools Mutation Taster, PROVEAN, and PolyPhen, the pathogenic effect of this novel mutation was tested; it was predicted to be "disease causing," with high pathogenicity scores. One previously reported mutation in exon 24 (c.9730C>T) of the ASPM gene resulting in protein truncation (p.Arg3244*) was also observed in family C. Mutations in the ASPM gene are the most common cause of MCPH in most cases. Therefore, enrolling additional affected families from remote areas of Pakistan would help in identifying or mapping novel mutations in the ASPM gene of primary microcephaly.


Resumo Microcefalia primária autossômica recessiva (MCPH) é um distúrbio do neurodesenvolvimento caracterizado por uma redução congênita do perímetro cefálico (-3 a -5 DP) e deficiência intelectual não progressiva. O objetivo do estudo foi avaliar mutações patogênicas no gene ASPM a fim de compreender a etiologia e o mecanismo molecular da microcefalia primária. Amostras de sangue foram coletadas de várias famílias em diferentes áreas remotas do Paquistão de fevereiro de 2017 a maio de 2019, que foram identificadas como afetadas com microcefalia primária. A extração do DNA foi realizada pelo método salting-out; a qualidade e a quantidade de DNA foram avaliadas por espectrofotometria e eletroforese em gel de agarose a 1%, respectivamente, na Universidade de Punjab. A análise de mutação foi realizada por sequenciamento completo do exoma do Cologne Center for Genomics, University of Cologne. O sequenciamento de Sanger foi feito na Universidade do Punjab para confirmar a natureza patogênica da mutação. Uma nova mutação de deleção de 4 bp c.3877_3880delGAGA foi detectada no exon 17 do gene ASPM em duas famílias afetadas por microcefalia primária (A e B), que resultou em uma mutação de frame shift no gene seguida por síntese de proteína truncada (pGlu1293Lysfs * 10), bem como a perda do domínio IQ de ligação à calmodulina e o domínio do tipo Armadillo na proteína ASPM. Usando as ferramentas in-silico Mutation Taster, PROVEAN e PolyPhen, o efeito patogênico dessa nova mutação foi testado; foi previsto ser "causador de doenças", com altos escores de patogenicidade. Uma mutação relatada anteriormente no exon 24 (c.9730C > T) do gene ASPM, resultando em truncamento de proteína (p.Arg3244 *) também foi observada na família C. Mutações no gene ASPM são a causa mais comum de MCPH na maioria dos casos . Portanto, a inscrição de famílias afetadas adicionais de áreas remotas do Paquistão ajudaria a identificar ou mapear novas mutações no gene ASPM da microcefalia primária.


Subject(s)
Humans , Microcephaly/genetics , Nerve Tissue Proteins/genetics , Pakistan , Consanguinity , Mutation/genetics
4.
Arch. argent. pediatr ; 120(5): e213-e217, oct. 2022. tab
Article in Spanish | LILACS, BINACIS | ID: biblio-1395755

ABSTRACT

La neutropenia congénita grave (NCG) es una entidad heterogénea cuya característica común es un recuento absoluto de neutrófilos inferior a 0,5 x 10 9/l. Presenta gran heterogeneidad genética, las mutaciones más frecuentes son las del gen de la elastasa 2 (ELA 2). El tratamiento de primera elección es la administración de factor estimulador de colonias de granulocitos. Los pacientes con NCG presentan infecciones graves en etapas tempranas de la vida. Se presenta una paciente con NCG asociada a fenotipo peculiar con facies triangular, retromicrognatia, patrón venoso prominente en miembros inferiores, comunicación interauricular y mal progreso ponderal, en quien se diagnosticó déficit de la enzima glucosa 6 fosfato deshidrogenasa, subunidad catalítica 3 (G6PC3). A pesar de lo infrecuente de esta mutación como causa de NCG (2 %), su conocimiento cobra importancia porque la coexistencia del fenotipo característico con una NCG orienta en la solicitud del estudio genético que permite arribar al diagnóstico.


Severe congenital neutropenia (SCN) is a heterogeneous disease whose more common feature is an absolute neutrophil count less than 0.5 x 10 9/l. It presents great genetic heterogeneity. Autosomal dominant inherited mutations of the elastase 2 gene (ELA2) represent the most common etiology. The first choice treatment is the administration of granulocyte colony stimulating factor. Patients with SCN develop severe infections early in life. We present a patient who associated SCN to a peculiar phenotype, characterized by triangular facies, retromicrognathia, prominent venous pattern in the lower limbs, atrial septal defect and poor weight progress, in whom a deficiency of the enzyme glucose 6 phosphate dehydrogenase, a catalytic subunit 3 (G6PC3), was diagnosed. Despite the infrequency of this mutation as the origin of SCN (2%), its knowledge becomes important because the coexistence of the characteristic phenotype and SCN guides the request for the genetic study that allows reaching the diagnosis.


Subject(s)
Humans , Female , Infant , Glucosephosphate Dehydrogenase/genetics , Neutropenia/congenital , Neutropenia/diagnosis , Neutropenia/genetics , Granulocyte Colony-Stimulating Factor/genetics , Congenital Bone Marrow Failure Syndromes/diagnosis , Mutation
5.
Poblac. salud mesoam ; 19(2)jun. 2022.
Article in Spanish | LILACS-Express | LILACS, SaludCR | ID: biblio-1386940

ABSTRACT

Resumen Introducción: las miotonías hereditarias son enfermedades del músculo esquelético, clínica y genéticamente heterogéneas, caracterizadas por presentar miotonía (retraso en la relajación muscular). Se dividen en distróficas y no distróficas, las cuales son causadas por mutaciones en el ADN. Objetivo: describir los hallazgos más relevantes sobre algunas miotonías hereditarias en Costa Rica. Metodología: se realizaron estudios genético-moleculares en individuos afectados con una condición miotónica y sus familiares en riesgo genético. Resultados: la mutación de la distrofia miotónica tipo 1 (DM1) se encontró en 246 individuos. Nuestros estudios contribuyeron a mejorar la correlación entre el tamaño de la mutación y la edad de inicio de los síntomas, además, se demostró el papel modificador de algunos otros factores genéticos en la DM1. De las familias de 18 pacientes negativos para la mutación DM1, en ocho se logró identificar una mutación en genes que proporcionan la información para formar canales iónicos. Los análisis de función ayudaron a mostrar que esas mutaciones ocasionan cambios estructurales y estos modifican las propiedades de los canales, provocando una pérdida o ganancia de su función. Conclusiones: este trabajo permitió la clasificación clínica correcta de muchos pacientes, así como explorar las bases genéticas y moleculares de la variabilidad clínica de estas enfermedades, mediante la búsqueda de factores modificadores de la DM1 y los estudios funcionales de mutaciones causantes de canalopatías hereditarias, aspecto clave para asesorar a pacientes y familias y abordar la enfermedad de la forma más adecuada.


Abstract Introduction: Hereditary myotonias are a clinically and genetically heterogeneous group of skeletal muscle diseases characterized by myotonia (delayed muscle relaxation). Clinically, they are classified as dystrophic and non-dystrophic myotonias, which are caused by mutations in the DNA. Aim: Describe the most relevant findings on some hereditary myotonias in Costa Rica. Methodology: Genetic-molecular studies of these diseases were carried out in individuals affected with a myotonic condition and their relatives at genetic risk. Results: The mutation for myotonic dystrophy type 1 (DM1) was found in 246 individuals. We have seen an improvement in the correlations between the size of the mutation and the age of onset of symptoms, in addition we have demonstrated the modifying role of some genetic factors in DM1. Of 18 patients who were negative for the mutation causing DM1, in eight families, a mutation was identified in genes, that provide the instructions for producing proteins called ion channels. Analyzes at the functional level helped to show that these mutations cause structural changes that modify the properties of these channels, causing a loss or gain of channel function. Conclusions: Our studies have allowed a correct clinical classification for many patients with these pathologies, in addition to explore the genetic and molecular basis of the clinical variability of these diseases, by searching for DM1 modifying factors and functional studies of new mutations that cause hereditary channelopathies, which is key to provide genetic counseling to patients and families and treating the disease in the most appropriate way.


Subject(s)
Humans , Male , Female , Myotonia Congenita/genetics , Costa Rica , Mutation
6.
ABCS health sci ; 47: e022218, 06 abr. 2022.
Article in English | LILACS | ID: biblio-1391913

ABSTRACT

INTRODUCTION: The frequency of the premutation alleles of the FMR1 gene varies from 1:100 to 1:260 Israeli, Canadian, Finnish and American women, but it is unknown in Brazil. Premutation carriers may have reduced reproductive age and are at risk of transmitting the expanded allele to their offspring, and consequently fragile X syndrome. OBJECTIVE: To observe the distribution range of the FMR1 gene alleles in a population of women with idiopathic infertility, without symptoms of premature ovarian insufficiency. METHODS: The presence of premutation in FMR1 was assessed by conventional PCR, agarose, and acrylamide gel and analysis of fragments in capillary electrophoresis. Lymphocyte DNA obtained from 283 women undergoing infertility treatment was analyzed. RESULTS: 169 patients had the normal heterozygous allele (59.7%), 114 had the normal homozygous allele (40.6%) and no patient had the premutation. Premature ovarian insufficiency is seen in 20 to 30% of women with the permutated allele. Thus, the condition can be asymptomatic in a large part of the premutation carriers. Brazil has a diverse population and, therefore, the allele frequencies of many gene variants are unknown. Previous Brazilian studies have shown a low frequency of the premutation allele in different patient cohorts. Corroborating these articles, the results demonstrated that the frequency of the premutation allele is low in the infertile women population studied. CONCLUSION: Tracking the size of the FMR1 gene alleles allows the expansion of knowledge about the frequency of risk alleles associated with genetic diseases in the Brazilian population.


INTRODUÇÃO: A frequência dos alelos pré-mutados do gene FMR1 varia de 1:100 e 1:260 mulheres israelenses, canadenses, finlandesas e americanas, mas é desconhecida no Brasil. Portadoras da pré-mutação podem apresentar redução da idade reprodutiva e possuem risco de transmissão do alelo expandido para a prole, e consequentemente a Síndrome do X frágil. OBJETIVO: Observar a faixa de distribuição dos alelos do gene FMR1 em uma população de mulheres com infertilidade idiopática, sem sintomas de insuficiência ovariana prematura. MÉTODOS: A presença da pré-mutação em FMR1 foi avaliada por PCR convencional, gel de agarose e acrilamida e análise de fragmentos em eletroforese capilar. Analisou-se DNA de linfócitos obtidos de 283 mulheres em tratamento de infertilidade. RESULTADOS: Foi observado que 169 pacientes apresentam o alelo heterozigoto normal (59,7%), 114 apresentam o alelo homozigoto normal (40,6%) e nenhuma paciente apresentou a pré-mutação. A insuficiência ovariana prematura é observada em 20 a 30% das mulheres portadoras do alelo pré-mutado. Assim, a presença de um alelo pré-mutado pode ser assintomática em grande parte dos casos. O Brasil possui uma população diversificada e, portanto, as frequências alélicas de muitas variantes gênicas são desconhecidas. Estudos brasileiros anteriores mostraram uma baixa frequência do alelo pré-mutado em diferentes coortes de pacientes. Corroborando estes autores, os resultados demonstram que frequência do alelo pré-mutado é baixa na população de mulheres inférteis estudada. CONCLUSÃO: O rastreamento do tamanho dos alelos do gene FMR1 permite ampliar o conhecimento sobre a frequência dos alelos de risco para doenças genética na população brasileira.


Subject(s)
Humans , Female , Adult , Primary Ovarian Insufficiency , Alleles , Gene Frequency , Infertility, Female , Fragile X Syndrome , Mutation
7.
Arch. argent. pediatr ; 120(1): e21-e24, feb 2022. tab
Article in English, Spanish | LILACS, BINACIS | ID: biblio-1353741

ABSTRACT

La hipofosfatasia es un trastorno hereditario raro causado por mutaciones en el gen ALPL. Causa defectos en la mineralización ósea y dental, función respiratoria anormal, convulsiones, hipotonía, dolor óseo y nefrocalcinosis. Las formas clínicas se reconocen según la edad al diagnóstico y la gravedad. Presentamos el caso de una lactante con fontanela anterior agrandada, bóveda craneal blanda, fracturas, dificultad respiratoria y convulsiones. El análisis bioquímico mostró hipercalcemia, fosfato sérico normal y fosfatasa alcalina sérica baja. La radiografía mostró hipomineralización, fracturas y callos. La concentración plasmática de piridoxal-5'-fosfato era de 762 mg/l (intervalo normal: 5-50) y la concentración de fosfoetanolamina en orina era de 1015 mmol/l (intervalo normal: 15-341). El análisis del gen ALPL mostró dos mutaciones heterocigotas compuestas, una de las cuales es novedosa. El diagnóstico y tratamiento tempranos de la hipofosfatasia perinatal podría mejorar los resultados y tener un impacto positivo en la sobrevida.


Hypophosphatasia (HPP) is a rare inherited disorder caused by mutations in the ALPL gene. Mineralization defect in bones and teeth, abnormal respiratory function, seizures, hypotonia, bone pain, and nephrocalcinosis can be observed. Clinical forms are usually recognized based on age at diagnosis and severity of features. We present an infant with an enlarged anterior fontanelle, soft calvarium, fractures, respiratory distress, and seizures. Biochemical analysis showed hypercalcemia, normal serum phosphate, and low serum alkaline phosphatase (ALP) levels. X-ray showed hypomineralization, fractures, and callus formations. Plasma pyridoxal 5'-phosphate (PLP) was 762 mg/L (NV : 5-50) and urine phosphoethanolamine (PEA) was 1015 mmol/L (NV : 15-341) and ALPL gene analysis showed two compound heterozygous mutations, one of which is a novel one. Early diagnosis and treatment of perinatal HPP may improve outcomes and might have a positive impact on survival.


Subject(s)
Humans , Female , Pregnancy , Infant , Hypophosphatasia/diagnosis , Hypophosphatasia/genetics , Hypophosphatasia/drug therapy , Nephrocalcinosis , Seizures , Alkaline Phosphatase/genetics , Alkaline Phosphatase/therapeutic use , Mutation
8.
Arch. argent. pediatr ; 120(1): e39-e42, feb 2022. tab, ilus
Article in Spanish | LILACS, BINACIS | ID: biblio-1353777

ABSTRACT

Las nuevas metodologías de secuenciación masiva han permitido caracterizar e identificar variantes genéticas asociadas a diferentes patologías. En este trabajo se presenta el caso de una paciente con una mutación del gen RARS2 que codifica la enzima arginino-ARNt ligasa para la codificación de proteínas. Esta alteración genética se manifiesta en hipoplasia pontocerebelosa tipo 6, con una prevalencia de <1/1 000 0000, caracterizada por un cerebelo y un puente de menor tamaño asociados a un retraso grave en el neurodesarrollo. El análisis de caso permite un mejor conocimiento de enfermedades de origen genético, específicamente, de aquellas con patrones de herencia autosómicos recesivos de padres no consanguíneos. Su estudio sobre todo en lo relacionado con el ámbito familiar y socioeconómico, y su base genética, ayuda a una mejor calidad de vida de los pacientes y su familia.


The latest method of next-generation sequencing has allowed the characterization and identification of genetic variants associated to diverse pathologies. In this article, we present the case of female patient with a mutation of the RARS2 gene that encodes the enzyme for arginyl tRNA synthetase for coding of proteins. This genetic alteration manifests in pontocerebellar hypoplasia type 6, with a prevalence of <1/1,000,0000, characterized by a cerebellum and pons that are smaller in size and are associated with severe neurodevelopmental delay. The analysis of the case of this patient provides better knowledge of diseases of genetic origin; specifically, regarding genetic diseases of autosomal recessive patterns of inheritance from non-consanguineous parents. The impact of these studies; specially within the family, social, economic and genetic aspects helps provide a better quality of life for these patients and their family.


Subject(s)
Humans , Female , Child, Preschool , Arginine-tRNA Ligase/genetics , Quality of Life , Magnetic Resonance Imaging , Sequence Analysis , Colombia , Mutation
9.
Arch. endocrinol. metab. (Online) ; 66(1): 32-39, Jan.-Feb. 2022. tab
Article in English | LILACS | ID: biblio-1364313

ABSTRACT

ABSTRACT Objetivo: Maturity onset diabetes of the young (MODY) patients have clinical heterogeneity as shown by many studies. Thus, often it is misdiagnosed to type 1 or type 2 diabetes(T2DM). The aim of this study is to evaluate MODY mutations in adult T2DM patients suspicious in terms of MODY, and to show clinical and laboratory differences between these two situations. Subjects and methods: In this study, we analyzed 72 type 2 diabetic patients and their relatives (35F/37M) who had been suspected for MODY and referred to genetic department for mutation analysis. The gene mutations for MODY have been assessed in the laboratory of Marmara University genetics. Totally 67 (32F/35M; median age 36.1) diabetic patients were analyzed for 7 MODY mutations. Twelve patients who have uncertain mutation (VUS) were excluded from study for further evaluation. MODY(+) (n:30) patients and T2DM patients (n:25) were compared for clinical and laboratory parameters. Results: In MODY(+) subjects, mutations in GCK (MODY 2) (n:12; 40%) were the most common followed by HNF4A (MODY 1) (n:4; 13.3%). Diabetes diagnosis age was younger in MODY(+) group but not statistically significant. Sixty-six percent of MODY(+) subjects had diabetes history at 3-consecutive generations in their family compared with 28% of T2DM patients statistically significant (p:0.006). Gender, BMI, C-peptide, HbA1c, lipid parameters, creatinine, GFR, microalbuminuria, vitamin D and calcium were not statistically different between the groups. Conclusion: According to present study results, MODY mutation positivity is most probable in young autoantibody (-) diabetic patients diagnosed before 30 years of age, who have first degree family history of diabetes.


Subject(s)
Humans , Adult , Diabetes Mellitus, Type 2/diagnosis , Diabetes Mellitus, Type 2/genetics , C-Peptide , Hepatocyte Nuclear Factor 1-alpha/genetics , Mutation/genetics
10.
Arch. endocrinol. metab. (Online) ; 66(1): 104-111, Jan.-Feb. 2022. tab, graf
Article in English | LILACS | ID: biblio-1364312

ABSTRACT

SUMMARY We present the unique case of an adult Brazilian woman with severe short stature due to growth hormone deficiency with a heterozygous G to T substitution in the donor splice site of intron 3 of the growth hormone 1 (GH1) gene (c.291+1G>T). In this autosomal dominant form of growth hormone deficiency (type II), exon 3 skipping results in expression of the 17.5 kDa isoform of growth hormone, which has a dominant negative effect over the bioactive isoform, is retained in the endoplasmic reticulum, disrupts the Golgi apparatus, and impairs the secretion of other pituitary hormones in addition to growth hormone deficiency. This mechanism led to the progression of central hypothyroidism in the same patient. After 5 years of growth and thyroid hormone replacement, at the age of 33, laboratory evaluation for increased weight gain revealed high serum and urine cortisol concentrations, which could not be suppressed with dexamethasone. Magnetic resonance imaging of the sella turcica detected a pituitary macroadenoma, which was surgically removed. Histological examination confirmed an adrenocorticotropic hormone (ACTH)-secreting pituitary macroadenoma. A ubiquitin-specific peptidase 8 (USP8) somatic pathogenic variant (c.2159C>G/p.Pro720Arg) was found in the tumor. In conclusion, we report progression of isolated growth hormone deficiency due to a germline GH1 variant to combined pituitary hormone deficiency followed by hypercortisolism due to an ACTH-secreting macroadenoma with a somatic variant in USP8 in the same patient. Genetic studies allowed etiologic diagnosis and prognosis of this unique case.


Subject(s)
Humans , Female , Adult , Human Growth Hormone , Pituitary ACTH Hypersecretion , Dwarfism, Pituitary/genetics , Endopeptidases/genetics , Ubiquitin Thiolesterase/genetics , Endosomal Sorting Complexes Required for Transport/genetics , Germ Cells , Mutation
12.
Arq. neuropsiquiatr ; 80(1): 69-74, Jan. 2022. tab, graf
Article in English | LILACS | ID: biblio-1360142

ABSTRACT

ABSTRACT Background: Congenital myasthenic syndromes (CMS) have some phenotypic overlap with seronegative myasthenia gravis (SNMG). Objective: The aim of this single center study was to assess the minimum occurrence of CMS misdiagnosed as double SNMG in a Brazilian cohort. Methods: The genetic analysis of the most common mutations in CHRNE, RAPSN, and DOK7 genes was used as the main screening tool. Results: We performed genetic analysis in 22 patients with a previous diagnosis of 'double' SNMG. In this study, one CMS patient was confirmed due to the presence of compound heterozygous variants in the CHRNE gene (c.130insG/p.Cys210Phe). Conclusions: This study confirmed that CMS due to CHNRE mutations can be mistaken for SNMG. In addition, our study estimated the prevalence of misdiagnosed CMS to be 4.5% in 'double' SNMG patients of our center. Based on our findings, genetic screening could be helpful in the diagnostic workup of patients with 'double' SNMG in whom differential diagnosis is recommended.


RESUMO Antecedentes: As síndromes miastênicas congênitas (SMC) podem ter sobreposição fenotípica com a miastenia gravis soronegativa (MG-SN). Objetivo: Estabelecer a prevalência mínima de SMC diagnosticada inicialmente como MG duplo soronegativa em uma série de casos brasileiros. Métodos: A análise genética das mutações mais comuns nos genes CHRNE, RAPSN e DOK7 foi usada como o principal exame de triagem. Resultados: Vinte e dois pacientes com diagnóstico prévio de MG-SN foram geneticamente analisados, sendo que uma paciente foi confirmada com SMC devido a presença de variante em heterozigose composta no gene CHRNE (c.130insG/p.Cys210Phe). Conclusões: O presente estudo confirma que SMC devido mutação no gene CHNRE pode ser inicialmente diagnosticada como MG-SN. O estudo estimou como 4,5% a prevalência de diagnóstico de SMC entre nossos pacientes préviamente diagnosticados como MG-SN. Com base nesse estudo, a análise genética pode ser recomendada para investigação do diagnóstico diferencial em pacientes com MG-SN.


Subject(s)
Humans , Myasthenic Syndromes, Congenital/diagnosis , Myasthenic Syndromes, Congenital/genetics , Myasthenia Gravis/diagnosis , Myasthenia Gravis/genetics , Genetic Testing , Cohort Studies , Mutation
13.
Article in Chinese | WPRIM | ID: wpr-936329

ABSTRACT

OBJECTIVE@#To analyze the mutations in transcription regulatory sequences (TRSs) of coronaviruss (CoV) to provide the basis for exploring the patterns of SARS-CoV-2 transmission and outbreak.@*METHODS@#A combined evolutionary and molecular functional analysis of all sets of publicly available genomic data of viruses was performed.@*RESULTS@#A leader transcription regulatory sequence (TRS-L) usually comprises the first 60-70 nts of the 5' UTR in a CoV genome, and the body transcription regulatory sequences (TRS-Bs) are located immediately upstream of the genes other than ORF1a and 1b. In each CoV genome, the TRS-L and TRS-Bs share a specific consensus sequence, namely the TRS motif. Any changes of nucleotide residues in the TRS motifs are defined as TRS motif mutations. Mutations in the TRS-L or multiple TRS-Bs result in superattenuated variants. The spread of super-attenuated variants may cause an increase in asymptomatic or mild infections, prolonged incubation periods and a decreased detection rate of the viruses, thus posing new challenges to SARS-CoV-2 prevention and control. The super-attenuated variants also increase their possibility of long-term coexistence with humans. The Delta variant is significantly different from all the previous variants and may lead to a large-scale transmission. The Delta variant (B.1.617.2) with TRS motif mutation has already appeared and shown signs of spreading in Singapore, which, and even the Southeast Asia, may become the new epicenter of the next wave of SARS-CoV-2 outbreak.@*CONCLUSION@#TRS motif mutation will occur in all variants of SARS-CoV-2 and may result in super-attenuated variants. Only super-attenuated variants with TRS motif mutations will eventually lose the abilities of cross-species transmission and causing outbreaks.


Subject(s)
COVID-19/virology , Genome, Viral , Humans , Mutation , SARS-CoV-2/genetics
14.
Article in Chinese | WPRIM | ID: wpr-936214

ABSTRACT

Objective: To analyze the clinical phenotype and screen the genetic mutations of hereditary deafness in three deaf families to clarify their molecular biology etiology. Methods: From January 2019 to January 2020, three deaf children and family members were collected for medical history, physical examination, audiology evaluation, electrocardiogram and cardiac color Doppler ultrasound, temporal bone CT examination, and peripheral blood DNA was obtained for high-throughput sequencing of deafness genes. Sanger sequencing was performed to verify the variant sites among family members. The pathogenicity of the variants was evaluated according to the American College of Medical Genetics and Genomics. Results: The probands in the three families had deafness phenotypes. In family 1, proband had multiple lentigines, special facial features, growth retardation, pectus carinatum, abnormal skin elasticity, cryptorchidism and other manifestations. In family 2, proband had special facial features, growth retardation and abnormal heart, and the proband in family 3 had growth retardation and abnormal electrocardiogram. Genetic testing of three families detected three heterozygous mutations in the PTPN11 gene: c.1391G>C (p.Gly464Ala), c.1510A>G (p.Met504Val), c.1502G>A (p.Arg501Lys). All three sites were missense mutations, and the mutation sites were highly conserved among multiple homologous species. Based on clinical manifestations and genetic test results, proband 1 was diagnosed with multiple lentigines Noonan syndrome, and probands 2 and 3 were diagnosed with Noonan syndrome. Conclusion: Missense mutations in the PTPN11 gene may be the cause of the disease in the three deaf families. This study enriches the clinical phenotype and mutation spectrum of the PTPN11 gene in the Chinese population.


Subject(s)
Deafness/genetics , Genetic Testing , Hearing Loss/genetics , Humans , Male , Mutation , Phenotype , Protein Tyrosine Phosphatase, Non-Receptor Type 11/genetics
15.
Frontiers of Medicine ; (4): 83-92, 2022.
Article in English | WPRIM | ID: wpr-929204

ABSTRACT

The dihydrofolate reductase (dhfr) and dihydropteroate synthetase (dhps) genes of Plasmodium vivax, as antifolate resistance-associated genes were used for drug resistance surveillance. A total of 375 P. vivax isolates collected from different geographical locations in China in 2009-2019 were used to sequence Pvdhfr and Pvdhps. The majority of the isolates harbored a mutant type allele for Pvdhfr (94.5%) and Pvdhps (68.2%). The most predominant point mutations were S117T/N (77.7%) in Pvdhfr and A383G (66.8%) in Pvdhps. Amino acid changes were identified at nine residues in Pvdhfr. A quadruple-mutant haplotype at 57, 58, 61, and 117 was the most frequent (57.4%) among 16 distinct Pvdhfr haplotypes. Mutations in Pvdhps were detected at six codons, and the double-mutant A383G/A553G was the most prevalent (39.3%). Pvdhfr exhibited a higher mutation prevalence and greater diversity than Pvdhps in China. Most isolates from Yunnan carried multiple mutant haplotypes, while the majority of samples from temperate regions and Hainan Island harbored the wild type or single mutant type. This study indicated that the antifolate resistance levels of P. vivax parasites were different across China and molecular markers could be used to rapidly monitor drug resistance. Results provided evidence for updating national drug policy and treatment guidelines.


Subject(s)
Antimalarials/pharmacology , China/epidemiology , Drug Combinations , Drug Resistance/genetics , Folic Acid Antagonists/pharmacology , Humans , Mutation , Plasmodium vivax/genetics , Prevalence
16.
Frontiers of Medicine ; (4): 150-155, 2022.
Article in English | WPRIM | ID: wpr-929187

ABSTRACT

Cystic fibrosis (CF) is a rare autosomal recessive disease with only one pathogenic gene cystic fibrosis transmembrane conductance regulator (CFTR). To identify the potential pathogenic mutations in a Chinese patient with CF, we conducted Sanger sequencing on the genomic DNA of the patient and his parents and detected all 27 coding exons of CFTR and their flanking intronic regions. The patient is a compound heterozygote of c.2909G > A, p.Gly970Asp in exon 18 and c.1210-3C > G in cis with a poly-T of 5T (T5) sequence, 3 bp upstream in intron 9. The splicing effect of c.1210-3C > G was verified via minigene assay in vitro, indicating that wild-type plasmid containing c.1210-3C together with T7 sequence produced a normal transcript and partial exon 10-skipping-transcript, whereas mutant plasmid containing c.1210-3G in cis with T5 sequence caused almost all mRNA to skip exon 10. Overall, c.1210-3C > G, the newly identified pathogenic mutation in our patient, in combination with T5 sequence in cis, affects the CFTR gene splicing and produces nearly no normal transcript in vitro. Moreover, this patient carries a p.Gly970Asp mutation, thus confirming the high-frequency of this mutation in Chinese patients with CF.


Subject(s)
China , Cystic Fibrosis/genetics , Cystic Fibrosis Transmembrane Conductance Regulator/genetics , Humans , Mutation , Poly T , RNA, Messenger/genetics
17.
Article in English | WPRIM | ID: wpr-929150

ABSTRACT

Odontogenic tumors are rare lesions with unknown etiopathogenesis. Most of them are benign, but local aggressiveness, infiltrative potential, and high recurrence rate characterize some entities. The MAP-kinase pathway activation can represent a primary critical event in odontogenic tumorigenesis. Especially, the BRAF V600E mutation has been involved in 80-90% of ameloblastic lesions, offering a biological rationale for developing new targeted therapies. The study aims to evaluate the BRAF V600E mutation in odontogenic lesions, comparing three different detection methods and focusing on the Sequenom MassARRAY System. 81 surgical samples of odontogenic lesions were subjected to immunohistochemical analysis, Sanger Sequencing, and Matrix-Assisted Laser Desorption/Ionization-Time of Flight mass spectrometry (Sequenom). The BRAF V600E mutation was revealed only in ameloblastoma samples. Moreover, the presence of BRAF V600E was significantly associated with the mandibular site (ρ = 0.627; P value <0.001) and the unicystic histotype (ρ = 0.299, P value <0.001). However, any significant difference of 10-years disease-free survival time was not revealed. Finally, Sequenom showed to be a 100% sensitive and 98.1% specific, suggesting its high-performance diagnostic accuracy. These results suggest the MAP-kinase pathway could contribute to ameloblastic tumorigenesis. Moreover, they could indicate the anatomical specificity of the driving mutations of mandibular ameloblastomas, providing a biological rational for developing new targeted therapies. Finally, the high diagnostic accuracy of Sequenom was confirmed.


Subject(s)
Ameloblastoma/pathology , Carcinogenesis , Humans , Mitogen-Activated Protein Kinases/genetics , Mutation , Odontogenic Tumors/pathology , Proto-Oncogene Proteins B-raf/metabolism , Spectrometry, Mass, Matrix-Assisted Laser Desorption-Ionization
18.
Article in English | WPRIM | ID: wpr-929031

ABSTRACT

More than 100 genes located on the X chromosome have been found to be associated with X-linked intellectual disability (XLID) to date, and NEXMIF is a pathogenic gene for XLID. In addition to intellectual disability, patients with NEXMIF gene mutation can also have other neurological symptoms, such as epilepsy, abnormal behavior, and hypotonia, as well as abnormalities of other systems. Two children with intellectual disability and epilepsy caused by NEXMIF gene mutation were treated in the Department of Pediatrics, Xiangya Hospital, Central South University from March 8, 2017 to June 20, 2020. Patient 1, a 7 years and 8 months old girl, visited our department because of the delayed psychomotor development. Physical examination revealed strabismus (right eye), hyperactivity, and loss of concentration. Intelligence test showed a developmental quotient of 43.6. Electroencephalogram showed abnormal discharge, and cranial imaging appeared normal. Whole exome sequencing revealed a de novo heterozygous mutation, c.2189delC (p.S730Lfs*17) in the NEXMIF gene (NM_001008537). During the follow-up period, the patient developed epileptic seizures, mainly manifested as generalized and absent seizures. She took the medicine of levetiracetam and lamotrigine, and the seizures were under control. Patient 2, a 6-months old boy, visited our department due to developmental regression and seizures. He showed poor reactions to light and sound, and was not able to raise head without aid. Hypotonia was also noticed. The electroencephalogram showed intermittent hyperarrhythmia, and spasms were monitored. He was given topiramate and adrenocorticotrophic hormone (ACTH). Whole exome sequencing detected a de novo c.592C>T (Q198X) mutation in NEXMIF gene. During the follow-up period, the seizures were reduced with vigabatrin. He had no obvious progress in the psychomotor development, and presented strabismus. There were 91 cases reported abroad, 1 case reported in China, and 2 patients were included in this study. A total of 85 variants in NEXMIF gene were found, involving 83 variants reported in PubMed and HGMD, and the 2 new variants presented in our patients. The patients with variants in NEXMIF gene all had mild to severe intellectual disability. Behavioral abnormalities, epilepsy, hypotonia, and other neurological symptoms are frequently presented. The phenotype of male partially overlaps with that of female. Male patients often have more severe intellectual disability, impaired language, and autistic features, while female patients often have refractory epilepsy. Most of the variants reported so far were loss-of-function resulted in the reduced protein expression of NEXMIF. The degree of NEXMIF loss appears to correlate with the severity of the phenotype.


Subject(s)
Child , Epilepsy/genetics , Female , Humans , Intellectual Disability/genetics , Male , Muscle Hypotonia/complications , Mutation , Phenotype , Seizures/genetics , Strabismus/complications
19.
Article in English | WPRIM | ID: wpr-929019

ABSTRACT

OBJECTIVES@#Genetic mutation is one of the important causes for tumor genesis and development, but genetic mutation in nasopharyngeal carcinoma (NPC) has rarely been reported. This study explored the role of phosphatidylinositol 3 kinase-protein kinase B (PI3K-Akt), mammalian target of rapamycin (mTOR), and adenosine 5'-monophosphate (AMP)-activated protein kinase (AMPK) signaling pathway in the efficacy and prognosis in patients with NPC.@*METHODS@#A total of 31 patients with advanced NPC, who came from the Affiliated Cancer Hospital of Xiangya School of Medicine of Central South University/Hunan Provincial Cancer Hospital, were enrolled. All of the exons of 288 genes, introns of 38 genes and promoters or fusion breakpoint regions from the nasopharyngeal biopsy tissues before treatment were detected by the gene sequencing platform Illumina NextSeq CN500. The coding regions of 728 genes were carried out a high-depth sequencing of target region capture, and the 4 variant types of tumor genes (including point mutations, insertion deletions of small fragments, copy number variations, and currently known fusion genes) were detected. All of 31 patients received platinum-based induction chemotherapy combined with concurrent chemoradiotherapy and were followed up for a long time.@*RESULTS@#The 3-year regional failure-free survival (RFFS) and disease-free survival (DFS) in patients with PI3K-Akt pathway mutation were significantly lower than those in unmutated patients (χ2=6.647, P<0.05). The 3-year RFFS and DFS in patients with mTOR pathway mutations were significantly lower than those in unmutated patients, and there was significant difference (χ2=5.570, P<0.05). The rate of complete response (CR) in patients with unmutated AMPK pathway was significantly higher than that in patients with mutation at 3 months after treatment (P<0.05), and the 3-year RFFS and DFS in patients with AMPK pathway mutation were significantly lower than those in unmutated patients (χ2=4.553, P<0.05). PI3K-Akt/mTOR/AMPK signaling pathway mutations and pre-treatment EB virus DNA copy numbers were independent prognostic factors for 3-year RFFS and DFS in patients with NPC (both P<0.05).@*CONCLUSIONS@#The NPC patients with PI3K-Akt/mTOR/AMPK signaling pathway mutation have poor prognosis, and the detection of PI3K-Akt, mTOR, AMPK driver genes and signaling pathways by next-generation sequencing is expected to provide new idea for basic research and targeted therapy of NPC.


Subject(s)
AMP-Activated Protein Kinases/metabolism , DNA Copy Number Variations , Humans , Mutation , Nasopharyngeal Carcinoma/genetics , Nasopharyngeal Neoplasms/metabolism , Phosphatidylinositol 3-Kinases/metabolism , Prognosis , Proto-Oncogene Proteins c-akt/metabolism , Signal Transduction , Sirolimus , TOR Serine-Threonine Kinases/metabolism
20.
Article in English | WPRIM | ID: wpr-929003

ABSTRACT

OBJECTIVES@#The advanced non-small cell lung cancer (NSCLC) patients with pleural effusion have no opportunity for surgery treatment. Epidermal growth factor receptor (EGFR) tyrosine kinase inhibitors (TKIs) are the first-line drugs for these patients with EGFR-sensitive mutation. However, the disease progression and drug update during or after treatment of EGFR-TKIs bring more challenges and puzzles to clinical diagnosis and treatment, which inevitably requires archived pleural cell samples for EGFR re-examination or comparative study. Understanding the DNA quality of archived pleural fluid samples and effectively using archival data of pleural fluid cells are of great significance for tracing the origin of cases and basic medical research. This study aims to evaluate the consistency of EGFR mutant gene expression between the 2 methods, and to explore a reliable way for preserving cytological data and making full use of cytological archival data via cell HE staining smear and cell paraffin section.@*METHODS@#A total of 57 pleural fluid cytology cases in the Department of Pathology of China Aerospace Center Hospital from October 2014 to April 2021 were selected. Tumor cells were detected by cell HE staining smears and immunohistochemical staining for TTF-1 and Napsin A in the paired cell paraffin sections. There were more than 200 tumor cells in cell HE staining smear and the proportion of tumor cells were ≥70% in matched cell paraffin sections. Patients with 2 cell smears (one for cell data retention and the other for DNA extraction) were selected as the research subjects, and 57 pleural fluid samples were enrolled. EGFR gene mutation was detected by amplification refractory mutation system-polymerase chain reaction in 57 paired cell HE staining smears and cell paraffin sections. DNA concentration was 2 ng/μL. Cell HE smear was amplified side-by-side with DNA samples from paired cell paraffin sections. Result determination was according to the requirements of the reagent instructions. The external control cycle threshold (Ct) value of the No. 8 well of the samples to be tested was between 13 and 21, which was considered as successful and reliable samples. When the Ct value of EGFR gene mutation was <26, it was considered as positive; when the Ct value was between 26 and 29, it was critical positive; when the Ct value was equal or more than 29, it was negative. ΔCt value was the difference between mutant Ct value and externally controlled Ct value. The smaller the ΔCt value was, the better the quality of DNA of the detected sample was.@*RESULTS@#Among the 57 pleural effusion samples, 42 patients were hospitalized with pleural effusion as the first symptom, accounting for 73.7% (42/57). EGFR mutation was detected in 37 samples [64.9% (37/57)]. The mutation rate for 19del was 37.8% (14/37) while for L858R was 48.6% (18/37). Females were 56.7% (21/37) of mutation cases. The mutation consistency rate of cell HE staining smear and matched cell paraffin sections was 100%. The ΔCt values of cell HE staining smears were less than those of matched cell paraffin sections. The mutation Ct values of 37 cytological samples were statistically analyzed according to the preservation periods of the years of 2014-2015, 2016-2017, 2018-2019, and 2020-2021. There were significant differences in cell paraffin section in the years of 2014-2015 and 2016-2017 compared with the years of 2018-2019 and 2020-2021, while no significant differences were found in cell HE staining smear. Statistical analysis of externally controlled Ct values of 57 cytological samples showed that there were significant differences between cell HE staining smears and cell paraffin section in the years of 2014-2015 and 2016-2017, compared with the years of 2018-2019 and 2020-2021. The mutational Ct values of 37 paired cell blocks and smears were all <26, and the externally controlled Ct values of 57 paired cell paraffin sections and HE staining smears were all between 13 and 21.@*CONCLUSIONS@#The DNA quality of cell HE smears and matched cell paraffin section met the qualified requirements. Two methods possess show an excellent consistency in detecting EGFR mutation in NSCLC pleural fluid samples. The DNA quality of cell HE staining smear is better than that of cell paraffin sections, so cell HE staining smear can be used as important supplement of the gene test source. It should be noted that the limitation of cell HE staining smears is non-reproducibility, so multiple smears of pleural fluid are recommended to be prepared for multiple tests.


Subject(s)
Carcinoma, Non-Small-Cell Lung/drug therapy , DNA Mutational Analysis/methods , ErbB Receptors/genetics , Female , Humans , Lung Neoplasms/drug therapy , Male , Mutation , Paraffin/therapeutic use , Pleural Effusion/genetics , Protein Kinase Inhibitors/therapeutic use , Staining and Labeling
SELECTION OF CITATIONS
SEARCH DETAIL