Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 20 de 2.132
Filter
1.
Int. j. morphol ; 41(4): 1191-1197, ago. 2023. ilus
Article in English | LILACS | ID: biblio-1514363

ABSTRACT

SUMMARY: The toxic effects of thioacetamide (TAA) and carbon tetrachloride on the human body are well recognized. In this study, we examined whether TAA intoxication can induce kidney leukocyte infiltration (measured as leukocyte common antigen CD45) associated with the augmentation of the reactive oxygen species (ROS)/tumor necrosis factor-alpha (TNF-α) axis, as well as biomarkers of kidney injury with and without metformin treatment. Rats were either injected with TAA (200 mg/kg; twice a week for 8 weeks) before being sacrificed after 10 weeks (experimental group) or were pre-treated with metformin (200 mg/kg) daily for two weeks prior to TAA injections and continued receiving both agents until the end of the experiment, at week 10 (protective group). Using basic histology staining, immunohistochemistry methods, and blood chemistry analysis, we observed profound kidney tissue injury such as glomerular and tubular damage in the experimental group, which were substantially ameliorated by metformin. Metformin also significantly (p0.05) increase in kidney expression of CD45 positive immunostaining cells. In conclusion, we found that TAA induces kidney injury in association with the augmentation of ROS/TNF-α axis, independent of leukocyte infiltration, which is protected by metformin.


Son bien conocidosos los efectos tóxicos de la tioacetamida (TAA) y el tetracloruro de carbono en el cuerpo humano. En este estudio, examinamos si la intoxicación por TAA puede inducir la infiltración de leucocitos renales (medida como antígeno leucocitario común CD45) asociada con el aumento de las especies reactivas de oxígeno (ROS)/factor de necrosis tumoral-alfa (TNF-α), así como biomarcadores de daño renal con y sin tratamiento con metformina. A las ratas se les inyectó TAA (200 mg/kg; dos veces por semana durante 8 semanas) antes de sacrificarlas a las 10 semanas (grupo experimental) o se les pretrató con metformina (200 mg/kg) diariamente durante dos semanas antes de las inyecciones de TAA y continuaron recibiendo ambos agentes hasta el final del experimento, en la semana 10 (grupo protector). Usando tinción histológica básica, métodos de inmunohistoquímica y análisis químico de la sangre, observamos una lesión profunda del tejido renal, como daño glomerular y tubular en el grupo experimental, que mejoraron sustancialmente con la metformina. La metformina también inhibió significativamente (p0,05) en la expresión renal de células de inmunotinción positivas para CD45. En conclusión, encontramos que el TAA induce la lesión renal en asociación con el aumento del eje ROS/TNF-α, independientemente de la infiltración de leucocitos, que está protegida por metformina.


Subject(s)
Animals , Male , Rats , Thioacetamide/toxicity , Acute Kidney Injury/drug therapy , Hypoglycemic Agents/therapeutic use , Metformin/therapeutic use , Immunohistochemistry , Biomarkers , Tumor Necrosis Factor-alpha , Reactive Oxygen Species , Leukocyte Common Antigens , Acute Kidney Injury/chemically induced , Inflammation
2.
Int. j. morphol ; 41(3): 825-830, jun. 2023. ilus, tab
Article in English | LILACS | ID: biblio-1514291

ABSTRACT

SUMMARY: The cerebellum is a crucial area of the hindbrain that plays an essential role in balancing, excitement control, and subtle and accurate functions. Studies have shown that long-term use of D-galactose in mice, as with the symptoms of aging, causes morphological and functional disorders in the brain. This study was performed to evaluate the changes in the cerebellum cortex tissue and the measurement of reactive oxygen species (ROS) in the cerebellum following the induction of aging in mice by D-galactose. Accordingly, subjects were randomly assigned into two groups: Normal saline group and Aging group (D-galactose). To create an aging model, D- galactose, and saline solution (sodium chloride 0.9 %) were used. After completing the preparation and passage of the tissue, the cerebellum specimens were cut in 5 microns thickness and then stained with hematoxylin-eosin stain and finally examined under a Nikon microscope. Quantitative variables were analyzed by SPSS software using T-test. In the observations of cerebellum tissue samples, in the aged induced group by D-galactose, the most changes were observed in the Neuron purkinjense (Purkinje cells) layer. In the observations of the cerebellum tissue samples of aging group induced by D-galactose, the most changes were observed in the Neuron purkinjense, and the arrangement and placement of these cells were disorientated. The nucleus positioning was not central, and the Neuron purkinjense induced by aging were seen in different morphological forms. Necrosis, Chromatolysis, and Pyknosis were found. Based on the results, D-galactose (induction of aging) causes pathological changes in the cerebellar cortex, especially in the Neuron purkinjense layer.


El cerebelo es un área crucial del rombencéfalo que desempeña un papel esencial en el equilibrio, el control de la excitación y las funciones sutiles y precisas. Los estudios han demostrado que el uso a largo plazo de D-galactosa en ratones, al igual que con los síntomas del envejecimiento, provoca trastornos morfológicos y funcionales en el cerebro. Este estudio se realizó para evaluar los cambios en el tejido de la corteza del cerebelo y la medición de especies reactivas de oxígeno (ROS) en el cerebelo luego de la inducción del envejecimiento en ratones por D-galactosa. En consecuencia, los sujetos fueron asignados aleatoriamente a dos grupos: grupo de solución salina normal y grupo de envejecimiento (D-galactosa). Para crear un modelo de envejecimiento, se utilizaron D-galactosa y solución salina (cloruro de sodio al 0,9 %). Después de completar la preparación y el paso del tejido, las muestras de cerebelo se cortaron en un grosor de 5 µm y luego se tiñeron con tinción de hematoxilina-eosina y finalmente se examinaron bajo un microscopio Nikon. Las variables cuantitativas se analizaron mediante el software SPSS utilizando la prueba T. En las observaciones de muestras de tejido de cerebelo, en el grupo envejecido inducido por D-galactosa, la mayoría de los cambios se observaron en la capa de neuronas purkinjenses (células de Purkinje). En las observaciones de las muestras de tejido del cerebelo del grupo de envejecimiento inducidas por D-galactosa, la mayoría de los cambios se observaron en las neuronas purkinjenses, y la disposición y ubicación de estas células estaban desorientadas. El posicionamiento del núcleo no era central y las neuronas purkinjenses inducidas por el envejecimiento se observaban en diferentes formas morfológicas. Se encontró necrosis, cromatólisis y picnosis. Según los resultados, la D-galactosa (inducción del envejecimiento) provoca cambios patológicos en la corteza cerebelosa, especialmente en la capa de neuronas purkinjenses.


Subject(s)
Animals , Male , Mice , Aging , Cerebellum/pathology , Galactose/administration & dosage , Purkinje Cells , Cerebellum/cytology , Reactive Oxygen Species , Models, Animal , Mice, Inbred BALB C
3.
Int. j. morphol ; 41(3): 915-925, jun. 2023. ilus, tab
Article in English | LILACS | ID: biblio-1514287

ABSTRACT

SUMMARY: Magnolia bark extract supplementation has an anti-oxidative role in mammalians. However, its role in physiological aged-associated heart insufficiency is not known yet. Therefore, we investigated the effects of a magnolia bark complex, including magnolol and honokiol components (MAHOC), in elderly rat hearts (24-month-old aged group). One group of aged rats was supplemented with MAHOC (400 mg/kg/d, for 12 weeks) besides the standard rat diet while the second group of elderly rats and adult rats (to 6-month- old adult-group) were only fed with the standard rat diet. The morphological analysis using light microscopy has shown marked myofibrillar losses, densely localized fibroblasts, vacuolizations, infiltrated cell accumulations, and collagen fibers in the myocardium of the elderly rats compared to the adults. We also detected a markedly increased amount of degenerated cardiomyocytes including the euchromatic nucleus. The MAHOC supplementation of the elderly rats provided marked ameliorations in these abnormal morphological changes in the heart tissue. Furthermore, electrophysiological analysis of electrocardiograms (ECGs) in the supplemented group showed significant attenuations in the prolonged durations of P-waves, QRS-complexes, QT-intervals, and low heart rates compared to the unsupplemented elderly group. The biochemical analysis also showed significant attenuations in the activity of arylesterase and total antioxidant status in the myocardium of the supplemented group. We further determined significant attenuations in the activity of a mitochondrial enzyme succinate dehydrogenase, known as a source of reactive oxygen species (ROS), and the decreased level of ATP/ADP in the heart homogenates of the supplemented group. Moreover, under in vitro conditions by using an aging-mimicked cardiac cell line induced by D-galactose, we demonstrated that MAHOC treatment could provide prevention of depolarization in mitochondria membrane potential and high-level ROS production. Overall, our data presented significant myocardial ameliorations in physiological aging-associated morphological alterations parallel to the function and biochemical attenuations with MAHOC supplementation, at most, through recoveries in mitochondria.


La suplementación con extracto de corteza de magnolia tiene un papel antioxidante en los mamíferos, sin embargo, su rol en la insuficiencia cardíaca asociada al envejecimiento fisiológico aún no se conoce. Por lo anterior, investigamos los efectos de un complejo de corteza de magnolia, incluidos los componentes magnolol y honokiol (MAHOC), en corazones de ratas seniles (grupo de edad de 24 meses). La alimentación de grupo de ratas seniles se complementó con MAHOC (400 mg/kg/d, durante 12 semanas) además de la dieta estándar, mientras que el segundo grupo de ratas seniles y ratas adultas (hasta el grupo de adultos de 6 meses) solo recibió la dieta estándar para ratas. El análisis morfológico mediante microscopía óptica ha mostrado marcadas pérdidas miofibrilares, fibroblastos densamente localizados, vacuolizaciones, acumulaciones de células infiltradas y fibras de colágeno en el miocardio de las ratas seniles en comparación con las adultas. También detectamos una cantidad notablemente mayor de cardiomiocitos degradados, incluido el núcleo eucromático. La suplementación con MAHOC de las ratas seniles proporcionó mejoras marcadas en estos cambios morfológicos anormales en el tejido cardiaco. Por otra parte, el análisis de los electrocardiogramas (ECG) en el grupo suplementado mostró atenuaciones significativas en las duraciones prolongadas de las ondas P, los complejos QRS, los intervalos QT y las frecuencias cardíacas bajas, en comparación con el grupo de ratas seniles sin suplementación alimenticia. El análisis bioquímico también mostró atenuaciones significativas en la actividad de la arilesterasa y el estado antioxidante total en el miocardio del grupo suplementado. Determinamos además atenuaciones significativas en la actividad de la enzima mitocondrial succinato deshidrogenasa, conocida como fuente de especies reactivas de oxígeno (ROS), y la disminución del nivel de ATP/ADP en los homogeneizados de corazón del grupo suplementado. Además, en condiciones in vitro mediante el uso de una línea de células cardíacas, imitando el envejecimiento inducido por D- galactosa, demostramos que el tratamiento con MAHOC podría prevenir la despolarización en el potencial de membrana de las mitocondrias y la producción de ROS de alto nivel. En general, nuestros datos presentaron mejoras miocárdicas significativas en alteraciones morfológicas asociadas con el envejecimiento fisiológico paralelas a la función y atenuaciones bioquímicas con la suplementación con MAHOC, como máximo, a través de recuperaciones en las mitocondrias.


Subject(s)
Animals , Male , Rats , Biphenyl Compounds/administration & dosage , Aging , Magnolia , Heart/drug effects , Antioxidants/administration & dosage , Plant Extracts , Reactive Oxygen Species , Rats, Wistar , Lignans/administration & dosage , Heart/physiology
4.
Int. j. morphol ; 41(2): 583-590, abr. 2023. ilus
Article in English | LILACS | ID: biblio-1440339

ABSTRACT

SUMMARY: Rheumatoid arthritis (RA) that affects the synovial knee joint causes swelling of the synovial membrane and tissue damage. Interleukin-17A (IL-17A) and the enzyme glycogen synthase kinase-3β (GSK3β) are involved in the pathogenesis of RA. The link between IL-17A, GSK3β, the oxidative stress, and the profibrogenic marker alpha-smooth muscle actin (α-SMA) with and without TDZD-8, GSK3β inhibitor has not been studied before. Consequently, active immunization of rats was performed to induce RA after three weeks using collagen type II (COII) injections. The treated group received daily injection of 1 mg/kg TDZD-8 for 21 days following the immunization protocol (COII+TDZD-8). Blood and synovium tissue samples were harvested at the end of the experiment. RA development was confirmed as corroborated by a substantial increase in blood levels of the highly specific autoantibody for RA, anti-citrullinated protein antibody as well as augmentation of reactive oxidative species (ROS) levels measured as lipid peroxidation. RA induction also increased synovium tissue levels of IL-17A and the profibrogenic marker, α-SMA. All these parameters seemed to be significantly (p<0.0001) ameliorated by TDZD-8. Additionally, a significant correlation between IL-17A, ROS, and α-SMA and biomarkers of RA was observed. Thus, knee joint synovium RA induction augmented IL-17A/GSK3β/ROS/α-SMA axis mediated arthritis in a rat model of RA, which was inhibited by TDZD-8.


La artritis reumatoide (AR) que afecta la articulación sinovial de la rodilla provoca inflamación de la membrana sinovial y daño tisular. La interleucina-17A (IL-17A) y la enzima glucógeno sintasa quinasa-3β (GSK3β) están involucradas en la patogenia de la AR. No se ha estudiadol vínculo entre IL-17A, GSK3β, el estrés oxidativo y el marcador profibrogénico actina de músculo liso alfa (α-SMA) con y sin inhibidor de TDZD-8, GSK3β. En consecuencia, se realizó una inmunización activa de ratas para inducir la AR después de tres semanas usando inyecciones de colágeno tipo II (COII). El grupo tratado recibió una inyección diaria de 1 µg/ kg de TDZD-8 durante 21 días siguiendo el protocolo de inmunización (COII+TDZD-8). Se recogieron muestras de sangre y tejido sinovial al final del experimento. El desarrollo de AR se confirmó como lo corroboró el aumento sustancial en los niveles sanguíneos del autoanticuerpo altamente específico para AR, el anticuerpo antiproteína citrulinada, así como el aumento de los niveles de especies oxidativas reactivas (ROS) medidos como peroxidación lipídica. La inducción de AR también aumentó los niveles de tejido sinovial de IL-17A y el marcador profibrogénico, α-SMA. Todos estos parámetros parecían mejorar significativamente (p<0,0001) con TDZD-8. Además, se observó una correlación significativa entre IL- 17A, ROS y α-SMA y biomarcadores de AR. Por lo tanto, la inducción de AR en la sinovial de la articulación de la rodilla aumentó la artritis mediada por el eje IL-17A/GSK3β/ROS/α-SMA en un modelo de rata de AR, que fue inhibida por TDZD-8.


Subject(s)
Animals , Rats , Arthritis, Rheumatoid , Thiadiazoles/administration & dosage , Fibrosis , Immunohistochemistry , Blotting, Western , Actins , Immunization , Reactive Oxygen Species , Rats, Wistar , Interleukin-17 , Collagen Type II/administration & dosage , Disease Models, Animal , Glycogen Synthase Kinase 3 beta
5.
Int. j. morphol ; 41(1): 308-318, feb. 2023. ilus, tab, graf
Article in English | LILACS | ID: biblio-1430503

ABSTRACT

SUMMARY: Gastrin plays a vital role in the development and progression of gastric cancer (GC). Its expression is up-regulated in GC tissues and several GC cell lines. Yet, the underlying mechanism remains to be investigated. Here, we aim to investigate the role and mechanism of gastrin in GC proliferation. Gastrin-overexpressing GC cell model was constructed using SGC7901 cells. Then the differentially expressed proteins were identified by iTRAQ analysis. Next, we use flow cytometry and immunofluorescence to study the effect of gastrin on the mitochondrial potential and mitochondria-derived ROS production. Finally, we studied the underlying mechanism of gastrin regulating mitochondrial function using Co-IP, mass spectrometry and immunofluorescence. Overexpression of gastrin promoted GC cell proliferation in vitro and in vivo. A total of 173 proteins were expressed differently between the controls and gastrin- overexpression cells and most of these proteins were involved in tumorigenesis and cell proliferation. Among them, Cox17, Cox5B and ATP5J that were all localized to the mitochondrial respiratory chain were down-regulated in gastrin-overexpression cells. Furthermore, gastrin overexpression led to mitochondrial potential decrease and mitochondria-derived ROS increase. Additionally, gastrin-induced ROS generation resulted in the inhibition of cell apoptosis via activating NF-kB, inhibiting Bax expression and promoting Bcl-2 expression. Finally, we found gastrin interacted with mitochondrial membrane protein Annexin A2 using Co-IP and mass spectrometry. Overexpr ession of gastrin inhibits GC cell apoptosis by inducing mitochondrial dysfunction through interacting with mitochondrial protein Annexin A2, then up-regulating ROS production to activate NF-kB and further leading to Bax/Bcl-2 ratio decrease.


La gastrina juega un papel vital en el desarrollo y progresión del cáncer gástrico (CG). Su expresión está regulada al alza en tejidos de CG y en varias líneas celulares de CG. Sin embargo, el mecanismo subyacente aun no se ha investigado. El objetivo de este estudio fue investigar el papel y el mecanismo de la gastrina en la proliferación de CG. El modelo de células CG que sobre expresan gastrina se construyó usando células SGC7901. Luego, las proteínas expresadas diferencialmente se identificaron mediante análisis iTRAQ. A continuación, utilizamos la citometría de flujo y la inmunofluorescencia para estudiar el efecto de la gastrina en el potencial mitocondrial y la producción de ROS derivada de las mitocondrias. Finalmente, estudiamos el mecanismo subyacente de la gastrina que regula la función mitocondrial utilizando Co-IP, espectrometría de masas e inmunofluorescencia. La sobreexpresión de gastrina promovió la proliferación de células CG in vitro e in vivo. Un total de 173 proteínas se expresaron de manera diferente entre los controles y las células con sobreexpresión de gastrina y la mayoría de estas proteínas estaban implicadas en la tumorigenesis y la proliferación celular. Entre estas, Cox17, Cox5B y ATP5J, todas localizadas en la cadena respiratoria mitocondrial, estaban reguladas a la baja en las células con sobreexpresión de gastrina. Además, la sobreexpresión de gastrina provocó una disminución del potencial mitocondrial y un aumento de las ROS derivadas de las mitocondrias. Por otra parte, la generación de ROS inducida por gastrina resultó en la inhibición de la apoptosis celular mediante la activación de NF-kB, inhibiendo la expresión de Bax y promoviendo la expresión de Bcl-2. Finalmente, encontramos que la gastrina interactuaba con la proteína de membrana mitocondrial Anexina A2 usando Co-IP y espectrometría de masas. La sobreexpresión de gastrina inhibe la apoptosis de las células CG al inducir la disfunción mitocondrial a través de la interacción con la proteína mitocondrial Anexina A2, luego regula el aumento de la producción de ROS para activar NF-kB y conduce aún más a la disminución de la relación Bax/Bcl-2.


Subject(s)
Animals , Mice , Stomach Neoplasms/metabolism , Stomach Neoplasms/pathology , Gastrins/metabolism , Annexin A2/metabolism , Mitochondria/pathology , Mass Spectrometry , NF-kappa B , Fluorescent Antibody Technique , Reactive Oxygen Species , Apoptosis , Cell Line, Tumor , Immunoprecipitation , Cell Proliferation , Carcinogenesis , Flow Cytometry
6.
Chinese Journal of Biotechnology ; (12): 1621-1632, 2023.
Article in Chinese | WPRIM | ID: wpr-981158

ABSTRACT

The widespread of tigecycline resistance gene tet(X4) has a serious impact on the clinical efficacy of tigecycline. The development of effective antibiotic adjuvants to combat the looming tigecycline resistance is needed. The synergistic activity between the natural compound β-thujaplicin and tigecycline in vitro was determined by the checkerboard broth microdilution assay and time-dependent killing curve. The mechanism underlining the synergistic effect between β-thujaplicin and tigecycline against tet(X4)-positive Escherichia coli was investigated by determining cell membrane permeability, bacterial intracellular reactive oxygen species (ROS) content, iron content, and tigecycline content. β-thujaplicin exhibited potentiation effect on tigecycline against tet(X4)-positive E. coli in vitro, and presented no significant hemolysis and cytotoxicity within the range of antibacterial concentrations. Mechanistic studies demonstrated that β-thujaplicin significantly increased the permeability of bacterial cell membranes, chelated bacterial intracellular iron, disrupted the iron homeostasis and significantly increased intracellular ROS level. The synergistic effect of β-thujaplicin and tigecycline was identified to be related to interfere with bacterial iron metabolism and facilitate bacterial cell membrane permeability. Our studies provided theoretical and practical data for the application of combined β-thujaplicin with tigecycline in the treatment of tet(X4)-positive E. coli infection.


Subject(s)
Humans , Tigecycline/pharmacology , Escherichia coli/metabolism , Reactive Oxygen Species/therapeutic use , Plasmids , Anti-Bacterial Agents/metabolism , Escherichia coli Infections/microbiology , Bacteria/genetics , Microbial Sensitivity Tests
7.
Journal of Southern Medical University ; (12): 552-559, 2023.
Article in Chinese | WPRIM | ID: wpr-986961

ABSTRACT

OBJECTIVE@#To evaluate the regulatory effect of berberine on autophagy and apoptosis balance of fibroblast-like synoviocytes (FLSs) from patients with in rheumatoid arthritis (RA) and explore the mechanism.@*METHODS@#The inhibitory effect of 10, 20, 30, 40, 50, 60, 70, and 80 μmol/L berberine on RA-FLS proliferation was assessed using CCK-8 method. Annexin V/PI and JC-1 immunofluorescence staining was used to analyze the effect of berberine (30 μmol/L) on apoptosis of 25 ng/mL TNF-α- induced RA-FLSs, and Western blotting was performed to detect the changes in the expression levels of autophagy- and apoptosis-related proteins. The cells were further treated with the autophagy inducer RAPA and the autophagy inhibitor chloroquine to observe the changes in autophagic flow by laser confocal detection of mCherry-EGFP-LC3B. RA-FLSs were treated with the reactive oxygen species (ROS) mimic H2O2 or the ROS inhibitor NAC, and the effects of berberine on ROS, mTOR and p-mTOR levels were observed.@*RESULTS@#The results of CCK-8 assay showed that berberine significantly inhibited the proliferation of RA-FLSs in a time- and concentration-dependent manner. Flow cytometry and JC-1 staining showed that berberine (30 μmol/L) significantly increased apoptosis rate (P < 0.01) and reduced the mitochondrial membrane potential of RA-FLSs (P < 0.05). Berberine treatment obviously decreased the ratios of Bcl-2/Bax (P < 0.05) and LC3B-II/I (P < 0.01) and increased the expression of p62 protein in the cells (P < 0.05). Detection of mCherry-EGFP-LC3B autophagy flow revealed obvious autophagy flow block in berberine-treated RA-FLSs. Berberine significantly reduced the level of ROS in TNF-α-induced RA-FLSs and upregulated the expression level of autophagy-related protein p-mTOR (P < 0.01); this effect was regulated by ROS level, and the combined use of RAPA significantly reduced the pro-apoptotic effect of berberine in RA-FLSs (P < 0.01).@*CONCLUSION@#Berberine can inhibit autophagy and promote apoptosis of RA-FLSs by regulating the ROS-mTOR pathway.


Subject(s)
Humans , Synoviocytes , Berberine/metabolism , Reactive Oxygen Species/metabolism , Tumor Necrosis Factor-alpha/metabolism , Hydrogen Peroxide/metabolism , Sincalide/metabolism , Cell Proliferation , Arthritis, Rheumatoid/metabolism , Signal Transduction , TOR Serine-Threonine Kinases/metabolism , Apoptosis , Fibroblasts , Autophagy , Cells, Cultured
8.
Journal of Southern Medical University ; (12): 537-543, 2023.
Article in Chinese | WPRIM | ID: wpr-986959

ABSTRACT

OBJECTIVE@#To investigate the expression of microRNA miR-431-5p in gastric cancer (GC) tissues and its effects on apoptosis and mitochondrial function in GC cells.@*METHODS@#The expression level of miR-431-5p in 50 clinical samples of GC tissues and paired adjacent tissues was detected using real-time fluorescence quantitative PCR, and its correlation with the clinicopathological features of the patients was analyzed. A cultured human GC cell line (MKN-45 cells) were transfected with a miR-431-5p mimic or a negative control sequence, and the cell proliferation, apoptosis, mitochondrial number, mitochondrial potential, mitochondrial permeability transition pore (mPTP), reactive oxygen species (ROS) production and adenosine triphosphate (ATP) content were detected using CCK-8 assay, flow cytometry, fluorescent probe label, or ATP detection kit. The changes in the expression levels of the apoptotic proteins in the cells were detected with Western blotting.@*RESULTS@#The expression level of miR-431-5p was significantly lower in GC tissues than in the adjacent tissues (P < 0.001) and was significantly correlated with tumor differentiation (P=0.0227), T stage (P=0.0184), N stage (P=0.0005), TNM stage (P=0.0414) and vascular invasion (P=0.0107). In MKN-45 cells, overexpression of miR-431-5p obviously inhibited cell proliferation and induced cell apoptosis, causing also mitochondrial function impairment as shown by reduced mitochondrial number, lowered mitochondrial potential, increased mPTP opening, increased ROS production and reduced ATP content. Overexpression of miR-431-5p significantly downregulated the expression of Bcl-2 and increased the expressions of pro-apoptotic proteins p53, Bcl-2 and cleaved caspase-3 protein.@*CONCLUSION@#The expression of miR-431-5p is down-regulated in GC, which results in mitochondrial function impairment and promotes cell apoptosis by activating the Bax/Bcl-2/caspase3 signaling pathway, suggesting the potential role of miR-431-5p in targeted therapy for GC.


Subject(s)
Humans , Apoptosis/genetics , bcl-2-Associated X Protein , Caspase 3 , Cell Line, Tumor , Cell Proliferation/genetics , MicroRNAs/metabolism , Mitochondria/metabolism , Mitochondrial Permeability Transition Pore , Reactive Oxygen Species , Stomach Neoplasms/pathology
9.
Chinese Journal of Otorhinolaryngology Head and Neck Surgery ; (12): 681-689, 2023.
Article in Chinese | WPRIM | ID: wpr-986945

ABSTRACT

Objective: To investigate whether tanshinone ⅡA can protect the apoptosis of mice cochlear pericytes induced by high glucose and its specific protective mechanism, so as to provide experimental evidence for the prevention and treatment of diabetic hearing loss. Methods: C57BL/6J male mice were used to prepare type 2 diabetes model, which were divided into normal (NG) group, diabetic (DM) group, diabetic+tanshinone ⅡA (HG+tanshinone ⅡA) group and tanshinone ⅡA group. Each group had 10 animals. Primary cochlear pericytes were divided into NG group, HG group (high glucose 35 mmol/L), HG+tanshinone ⅡA (1, 3, 5 μmol/L) group, HG+Tanshinone ⅡA+LY294002 (PI3K/AKT pathway inhibitor) group, LY294002 group, tanshinone ⅡA group and DMSO group. Auditory brainstem response (ABR) was used to measure hearing threshold. Evans blue was used to detect the permeability of blood labyrinth barrier in each group. TBA methods were used to detect oxidative stress levels in various organs of mice. Morphological changes of stria vascularis were observed by hematoxylin-eosin staining (HE). Evans blue was used to detect the vascular labyrinth barrier permeability in cochlea. The expression of apoptosis protein in stria vascularis pericytes was observed by immunofluorescence. Pericytes apoptosis rate was observed by flow cytometry. DCFH-DA was combined with flow cytometry to detect intracellular ROS content, and Western blot was used to detect the expression of apoptotic proteins (Cleaved-caspase3, Bax), anti-apoptotic proteins (BCL-2) and pathway proteins (PI3K, p-PI3K, AKT, p-AKT). SPSS software was used for statistical analysis. Independent sample t test was performed, and P<0.05 was considered statistically significant. Results: Animal experiments: Tanshinone ⅡA decreased the hearing threshold of DM group [(35.0±3.5) dB SPL vs. (55.3±8.1) dB SPL] (t=4.899, P<0.01), decreased the oxidative stress level in cochlea (t=4.384, P<0.05), improved the structure disorder, atrophy of cochlea vascular lines, vacuole increased phenomenon. Tanshinone ⅡA alleviated the increased permeability of the blood labyrinth barrier [Evans blue leakage (6.84±0.27) AU vs. (8.59±0.85) AU] in the cochlea of DM mice (t=2.770, P<0.05), reversed the apoptotic protein: Caspase3 (t=4.956, P<0.01) and Bax (t=4.388, P<0.05) in cochlear vascularis. Cell experiments: Tanshinone ⅡA decreased intracellular ROS content in a concentration-dependent way (t=3.569, P<0.05; t=4.772, P<0.01; t=7.494, P<0.01); Tanshinone ⅡA decreased apoptosis rate and apoptotic protein, and increased the expression of anti-apoptotic protein, p-PI3K/PI3K and p-AKT/AKT in concentration-dependent manner (all P values<0.05); LY294002 reversed the protective effect of tanshinone ⅡA on pericytes apoptosis (all P values<0.05). Conclusion: Tanshinone ⅡA can inhibit the apoptosis of cochlear pericytes induced by high glucose by reducing oxidative stress level and activating PI3K/AKT signaling pathway under high glucose environment, thus playing a protective role in diabetic hearing loss.


Subject(s)
Animals , Male , Mice , Apoptosis , bcl-2-Associated X Protein , Diabetes Mellitus, Type 2 , Evans Blue , Glucose , Hearing Loss , Mice, Inbred C57BL , Pericytes/metabolism , Phosphatidylinositol 3-Kinases/metabolism , Proto-Oncogene Proteins c-akt/metabolism , Reactive Oxygen Species/metabolism , Signal Transduction
10.
Chinese Journal of Burns ; (6): 35-44, 2023.
Article in Chinese | WPRIM | ID: wpr-971147

ABSTRACT

Objective: To investigate the influence of reactive oxygen species (ROS) responsive self-assembled nanomicelle loaded with pyroptosis inhibitor on full-thickness skin defects in diabetic rats. Methods: Experimental research methods were employed. A nucleotide-binding oligomerization domain (NOD) 1/2 inhibitor (NOD-IN-1) was encapsulated with nanomicelle polyethylene glycol-block-polypropylene sulfide (PEG-b-PPS), and the resulting product was called PEPS@NOD-IN-1. The morphology and hydration particle size of PEG-b-PPS and PEPS@NOD-IN-1 were observed by transmission electron microscope and particle size analyzer, respectively, and the encapsulation rate and drug loading rate of PEPS@NOD-IN-1 to NOD-IN-1 and the cumulative release rate of NOD-IN-1 by PEPS@NOD-IN-1 in phosphate buffer solution (PBS) alone and hydrogen peroxide-containing PBS within 40 h were measured and calculated by microplate reader, and the sample number was 3. Twenty-four male Sprague-Dawley rats aged 6-7 weeks were injected with streptozotocin to induce type 1 diabetes mellitus. Six full-thickness skin defect wounds were made on the back of each rat. The injured rats were divided into PBS group, NOD-IN-1 group, PEG-b-PPS group, and PEPS@NOD-IN-1 group with corresponding treatment according to the random number table, with 6 rats in each group. The wound healing was observed on post injury day (PID) 3, 7, and 12, and the wound healing rate was calculated. The ROS levels in wound tissue were detected by immunofluorescence method on PID 3. On PID 7, the granulation tissue thickness in wound was assessed by hematoxylin-eosin staining, the mRNA expressions of NOD1 and NOD2 were detected by real-time fluorescence quantitative reverse transcription polymerase chain reaction, and the protein expressions of NOD1, NOD2, and GSDMD-N terminals were detected by Western blotting. Six wounds from different rats in each group were taken for detection of the above indicators. Wound tissue (3 samples per group) was taken from rats in PBS group and PEPS@NOD-IN-1 group on PID 7, and transcriptome sequencing was performed using high-throughput sequencing technology platform. Differentially expressed genes (DEGs) significantly down-regulated in PEPS@NOD-IN-1 group as compared with PBS group were screened, and the enrichment analysis of Kyoto Encyclopedia of Genes and Genomes (KEGG) was performed. The DEG heatmap of the NOD-like receptor pathway, a pyroptosis-related pathway, was made. Protein-protein interaction (PPI) analysis of DEGs in heatmap was performed through the STRING database to screen key genes of PEPS@NOD-IN-1 regulating the NOD-like receptor pathway. Data were statistically analyzed with analysis of variance for repeated measurement, one-way analysis of variance, and Tukey test. Results: PEG-b-PPS and PEPS@NOD-IN-1 were in spherical structures of uniform size, with hydration particle sizes of (134.2±3.3) and (143.1±2.3) nm, respectively. The encapsulation rate of PEPS@NOD-IN-1 to NOD-IN-1 was (60±5)%, and the drug loading rate was (15±3)%. The release of NOD-IN-1 from PEPS@NOD-IN-1 in PBS alone was slow, and the cumulative release rate at 40 h was only (12.4±2.3)%. The release of NOD-IN-1 from PEPS@NOD-IN-1 in hydrogen peroxide-containing PBS within 10 h was very rapid, and the cumulative release rate at 10 h reached (90.1±3.6)%. On PID 3 and 7, the wounds of rats in the four groups were gradually healed, and the healing in PEPS@NOD-IN-1 group was better than that in the other three groups. On PID 12, the wound scab area in PBS group was large, the wound epithelialization in NOD-IN-1 group and PEG-b-PPS group was obvious, and the wound in PEPS@NOD-IN-1 group was close to complete epithelialization. Compared with those in PBS group, NOD-IN-1 group, and PEG-b-PPS group, the wound healing rates on PID 7 and 12 in PEPS@NOD-IN-1 group were significantly increased (P<0.05), the level of ROS in wound tissue on PID 3 was significantly decreased (P<0.05), the thickness of granulation tissue in wound on PID 7 was significantly thickened (P<0.05), and the mRNA expressions of NOD1 and NOD2 and the protein expressions of NOD1, NOD2, and GSDMD-N terminals in wound tissue on PID 7 were significantly decreased (P<0.05). KEGG pathway analysis showed that DEGs significantly down-regulated in PEPS@NOD-IN-1 group as compared with PBS group were significantly enriched in NOD-like receptors, hypoxia-inducible factors, mitogen-activated protein kinases, and tumor necrosis factor (TNF) pathways. In the DEG heatmap of NOD-like receptor pathway, the genes regulating pyroptosis mainly involved NOD1, NOD2, NOD-like receptor thermoprotein domain-related protein 3, Jun, signal transduction and transcriptional activator 1 (STAT1), TNF-α-induced protein 3. The PPI results showed that NOD1, NOD2, and STAT1 were the key genes of PEPS@NOD-IN-1 regulating the NOD-like receptor pathway. Conclusions: PEPS@NOD-IN-1 can down-regulate the level of local ROS in wounds and the expression of NOD1, NOD2, and GSDMD-N terminals, the key regulators of pyroptosis, thereby promoting the repair of full-thickness skin defect wounds in diabetic rats. PEPS@NOD-IN-1 can also significantly down-regulate the pyroptosis, inflammation, and hypoxia-related pathways of wounds, and regulate NOD-like receptor pathways by down-regulating key genes NOD1, NOD2, and STAT1.


Subject(s)
Rats , Male , Animals , Reactive Oxygen Species , Wound Healing , Rats, Sprague-Dawley , Diabetes Mellitus, Experimental , Hydrogen Peroxide , Pyroptosis , Skin Abnormalities , Soft Tissue Injuries , NLR Proteins , Hypoxia , RNA, Messenger
11.
Chinese Journal of Burns ; (6): 15-24, 2023.
Article in Chinese | WPRIM | ID: wpr-971145

ABSTRACT

Objective: To investigate the effects and mechanism of interleukin-4-modified gold nanoparticle (IL-4-AuNP) on the wound healing of full-thickness skin defects in diabetic mice. Methods: Experimental research methods were adopted. Gold nanoparticle (AuNP) and IL-4-AuNP were synthesized by improving the methods described in published literature. The morphology of those two particles were photographed by transmission electron microscopy, and their particle sizes were calculated. The surface potential and hydration particle size of the two particles were detected by nanoparticle potentiometer and particle size analyzer, respectively. The clearance rate of IL-4-AuNP to hydrogen peroxide and superoxide anion was measured by hydrogen peroxide and superoxide anion kits, respectively. Mouse fibroblast line 3T3 cells were used and divided into the following groups by the random number table (the same below): blank control group, hydrogen peroxide alone group treated with hydrogen peroxide only, hydrogen peroxide+IL-4-AuNP group treated with IL-4-AuNP for 0.5 h and then treated with hydrogen peroxide. After 24 h of culture, the reactive oxygen species (ROS) levels of cells were detected by immunofluorescence method; cell count kit 8 was used to detect relative cell survival rate. The macrophage Raw264.7 mouse cells were then used and divided into blank control group and IL-4-AuNP group that treated with IL-4-AuNP. After 24 h of culture, the expression of arginase 1 (Arg-1) in cells was observed by immunofluorescence method. Twelve male BALB/c mice (mouse age, sex, and strain, the same below) aged 8 to 10 weeks were divided into IL-4-AuNP group and blank control group, treated accordingly. On the 16th day of treatment, whole blood samples were collected from mice for analysis of white blood cell count (WBC), red blood cell count (RBC), hemoglobin level, or platelet count and the level of aspartate aminotransferase (AST), alanine transaminase (ALT), urea, or creatinine. The inflammation, bleeding, or necrosis in the heart, liver, spleen, lung, and kidney tissue of mice were detected by hematoxylin-eosin (HE). Another 36 mice were selected to make diabetic model, and the full-thickness skin defect wounds were made on the back of these mice. The wounds were divided into blank control group, AuNP alone group, and IL-4-AuNP group, with 12 mice in each group, and treated accordingly. On the 0 (immediately), 4th, 9th, and 15th day of treatment, the wound condition was observed and the wound area was calculated. On the 9th day of treatment, HE staining was used to detect the length of neonatal epithelium and the thickness of granulation tissue in the wound. On the 15th day of treatment, immunofluorescence method was used to detect ROS level and the number of Arg-1 positive cells in the wound tissue. The number of samples was 6 in all cases. Data were statistically analyzed with independent sample t test, corrected t test, Tukey test, or Dunnett T3 test. Results: The size of prepared AuNP and IL-4-AuNP were uniform. The particle size, surface potential, and hydration particle size of AuNP and IL-4-AuNP were (13.0±2.1) and (13.9±2.5) nm, (-45.8±3.2) and (-20.3±2.2) mV, (14±3) and (16±4) nm, respectively. For IL-4-AuNP, the clearance rate to hydrogen peroxide and superoxide anion were (69±4)% and (52±5)%, respectively. After 24 h of culture, the ROS level of 3T3 in hydrogen peroxide alone group was significantly higher than that in blank control group (q=26.12, P<0.05); the ROS level of hydrogen peroxide+IL-4-AuNP group was significantly lower than that in hydrogen peroxide alone group (q=25.12, P<0.05) and close to that in blank control group (P>0.05). After 24 h of culture, the relative survival rate of 3T3 cells in hydrogen peroxide+IL-4-AuNP group was significantly higher than that in hydrogen peroxide alone group (t=51.44, P<0.05). After 24 h of culture, Arg-1 expression of Raw264.7 cells in IL-4-AuNP group was significantly higher than that in blank control group (t'=8.83, P<0.05).On the 16th day of treatment, there were no significant statistically differences in WBC, RBC, hemoglobin level, or platelet count and the level of AST, ALT, urea, or creatinine of mice between blank control group and IL-4-AuNP group (P>0.05). No obvious inflammation, bleeding or necrosis was observed in the heart, liver, spleen, lung, and kidney of important organs in IL-4-AuNP group, and no significant changes were observed compared with blank control group. On the 0 and 4th day of treatment, the wound area of diabetic mice in blank control group, AuNP alone group, and IL-4-AuNP group had no significant difference (P>0.05). On the 9th day of treatment, the wound areas both in AuNP alone group and IL-4-AuNP group were significantly smaller than that in blank control group (with q values of 9.45 and 14.87, respectively, P<0.05), the wound area in IL-4-AuNP group was significantly smaller than that in AuNP alone group (q=5.42, P<0.05). On the 15th day of treatment, the wound areas both in AuNP alone group and IL-4-AuNP group were significantly smaller than that in blank control group (with q values of 4.84 and 20.64, respectively, P<0.05), the wound area in IL-4-AuNP group was significantly smaller than that in AuNP alone group (q=15.80, P<0.05); moreover, inflammations such as redness and swelling were significantly reduced in IL-4-AuNP group compared with the other two groups. On the 9th day of treatment, compared with blank control group and AuNP alone group, the length of neonatal epithelium in the wound of diabetic mice in IL-4-AuNP group was significantly longer (all P<0.05), and the thickness of the granulation tissue in the wound was significantly increased (with q values of 11.33 and 9.65, respectively, all P<0.05). On the 15th day of treatment, compared with blank control group, ROS levels in wound tissue of diabetic mice in AuNP alone group and IL-4-AuNP group were significantly decreased (P<0.05). On the 15th day of treatment, the number of Arg-1 positive cells in the wounds of diabetic mice in IL-4-AuNP group was significantly more than that in blank control group and AuNP alone group, respectively (all P<0.05). Conclusions: IL-4-AuNP is safe in vivo, and can improve the oxidative microenvironment by removing ROS and induce macrophage polarization towards M2 phenotype, thus promote efficient diabetic wound healing and regeneration of full-thickness skin defects in diabetic mice.


Subject(s)
Mice , Male , Animals , Interleukin-4 , Gold/pharmacology , Diabetes Mellitus, Experimental , Creatinine , Hydrogen Peroxide , Reactive Oxygen Species , Superoxides , Metal Nanoparticles , Soft Tissue Injuries , Antibodies , Inflammation , Necrosis , Hemoglobins
12.
Journal of Experimental Hematology ; (6): 247-253, 2023.
Article in Chinese | WPRIM | ID: wpr-971132

ABSTRACT

OBJECTIVE@#To investigate the changes and roles of reactive oxygen species (ROS) and nuclear factor erythroid 2-related factor 2 (Nrf2) related antioxidases during erythroid development.@*METHODS@#Flow cytometry was used to detect the sensibility of peripheral red blood cells of wild-type mice to a strong oxidant hydrogen peroxide (H2O2). Erythroid cells from different developmental stages in bone marrow (BM) were obtained using fluorescence-activated cell sorter and the ROS levels were detected by flow cytometry. RT-qPCR was used to detect the changes of expression levels of Nrf2 and related antioxidases in erythroid cells from different developmental stages in BM. The ROS levels of the peripheral blood and BM nucleated erythrocytes in Nrf2 knockout mice were further examined. The expression level of Nrf2 in erythroid precursors isolated from 14.5 d embryonic liver of wild-type mice during differentiation and culture in vitro was detected.@*RESULTS@#In the peripheral blood of wild-type mice, the ROS level of reticulocytes and mature erythrocytes treated with H2O2 increased about 4 times and 7 times, respectively (P<0.01). In BM erythrocytes, the ROS level gradually decreased as the cells matured (r=0.85), while the expression level of Nrf2 and its related anti-oxidative genes increased (r=0.99). The ROS levels in peripheral blood erythrocytes and BM nucleated erythrocytes of Nrf2 knockout mice were significantly increased compared with wild-type mice (P<0.01). The expression of Nrf2 increased during the early erythroid development after embryonic liver cell sorting (P<0.01).@*CONCLUSION@#The expression levels of Nrf2 and its related factors vary during erythropoiesis. Nrf2 at physiological level plays an important antioxidant role during the erythroid development.


Subject(s)
Animals , Mice , Hydrogen Peroxide , Mice, Knockout , NF-E2-Related Factor 2/metabolism , Oxidative Stress , Reactive Oxygen Species/metabolism
13.
Journal of Experimental Hematology ; (6): 57-63, 2023.
Article in Chinese | WPRIM | ID: wpr-971102

ABSTRACT

OBJECTIVE@#To study the transcriptional regulation of SP1 on the scaffold protein ARRB1 and its influence on the progression of T-cell acute lymphoblastic leukemia (T-ALL).@*METHODS@#pGL3-ARRB1-luc, pCDNA3.1-SP1 and other transcription factor plasmids that might be combined were constructed, and the binding of transcription factors to the promoter of ARRB1 was identified by dual luciferase reporter gene assay. Stable cell lines with over-expressed SP1 (JK-SP1) was constructed by lentiviral transfection, and the expression correlation of SP1 with ARRB1 was demonstrated by RT-PCR and Western blot. Further, the apoptosis, cell cycle and reactive oxygen species (ROS) were detected by flow cytometry. The effect of SP1 on propagation of leukemic cells was observed on NCG leukemic mice.@*RESULTS@#The expression of fluorescein were enhanced by co-transfection with pCDNA3.1-SP1 and pGL3-ARRB1-luc plasmids in HEK293T cell line (P<0.001), meanwhile, compared with the control group, the expression of ARRB1 mRNA and protein were increased in JK-SP1 cells (both P<0.01). Further in vitro experiments showed that, compared with the control group, the apoptosis rate was higher (x=22.78%) , the cell cycle was mostly blocked in G1 phase (63.00%), and the content of reactive oxygen species increased in JK-SP1 cells. And in vivo experiments showed that the mice injected with JK-SP1 cells through tail vein had a favorable overall survival time (average 33.8 days), less infiltration in liver and spleen tissue.@*CONCLUSION@#Transcription factor SP1 promotes the transcription and expression of ARRB1 by binding the the promoter of ARRB1 directly, thus delays the progress of T-ALL in vitro and in vivo. The study improves the pathogenesis of ARRB1 regulating the initiation and development of T-ALL, and provides theoretical basis for the development of new possible targeted drugs.


Subject(s)
Humans , Animals , Mice , Precursor T-Cell Lymphoblastic Leukemia-Lymphoma/genetics , HEK293 Cells , Reactive Oxygen Species , Transcription Factors , T-Lymphocytes , Cell Line, Tumor , Sp1 Transcription Factor/metabolism
14.
Chinese Journal of Industrial Hygiene and Occupational Diseases ; (12): 2-7, 2023.
Article in Chinese | WPRIM | ID: wpr-970702

ABSTRACT

Objective: To investigate the effect of nuclear factor erythroid 2-related factor 2 (Nrf2) in the alteration of tight junction protein expression in choroid plexus epithelial cells created by lanthanum-activated matrix metalloproteinase 9 (MMP9) . Methods: In October 2020, immortalized rat choroid plexus epithelial cell line (Z310) cells were used as the blood-cerebrospinal fluid barrier in vitro, and were divided into control group and 0.125, 0.25, 0.5 mmol/L lanthanum chloride (LaCl(3)) treatment group. After treating Z310 cells with different concentrations of LaCl(3) for 24 hours, the morphological changes of Z310 cells were observed under inverted microscope, the protein expression levels of MMP9, occludin and zonula occludens-1 (ZO-1) were observed by cellular immunofluorescence method, and the protein expression levels of MMP9, tissue inhibitors of metalloproteinase1 (TIMP1) , occludin, ZO-1 and Nrf2 were detected by Western blotting. The level of reactive oxygen species (ROS) in cells was detected by flow cytometry. Results: Compared with the control group, Z310 cells in the LaCl(3) treatment group were smaller in size, with fewer intercellular junctions, and more dead cells and cell fragments. The expression level of MMP9 protein in cells treated with 0.25 and 0.5 mmol/L LaCl(3) was significantly higher than that in the control group (P<0.05) , and the expression level of TIMP1 and tight junction proteins occudin and ZO-1 was significantly lower than that in the control group (P<0.05) . Compared with the control group, the ROS production level in the 0.25, 0.5 mmol/L LaCl(3) treatment group was significantly increased (P<0.05) , and the Nrf2 protein expression level in the 0.125, 0.25, 0.5 mmol/L LaCl(3) treatment group was significantly decreased (P<0.05) . Conclusion: Lanthanum may increase the level of ROS in cells by down regulating the expression of Nrf2, thus activating MMP9 to reduce the expression level of intercellular tight junction proteins occludin and ZO-1.


Subject(s)
Rats , Animals , Matrix Metalloproteinase 9/metabolism , NF-E2-Related Factor 2/metabolism , Tight Junction Proteins/metabolism , Occludin/pharmacology , Choroid Plexus/metabolism , Reactive Oxygen Species/metabolism , Lanthanum/pharmacology , Epithelial Cells , Zonula Occludens-1 Protein/metabolism , Phosphoproteins/pharmacology
15.
China Journal of Chinese Materia Medica ; (24): 1330-1342, 2023.
Article in Chinese | WPRIM | ID: wpr-970604

ABSTRACT

This study aimed to explore the mechanism of Cistanches Herba in the treatment of cancer-induced fatigue(CRF) by network pharmacology combined with in vivo and in vitro experiments to provide a theoretical basis for the clinical medication. The chemical constituents and targets of Cistanches Herba were searched from the Traditional Chinese Medicine Systems Pharmacology Database and Analysis Platform(TCMSP). The targets of CRF were screened out by GeneCards and NCBI. The common targets of traditional Chinese medicine and disease were selected to construct a protein-protein interaction(PPI) network, followed by Gene Ontology(GO) functional and Kyoto Encyclopedia of Genes and Genomes(KEGG) pathway enrichment analyses. A visual signal pathway rela-ted to Chinese medicine and disease targets was constructed. The CRF model was induced by paclitaxel(PTX) in mice. Mice were divided into a control group, a PTX model group, and low-and high-dose Cistanches Herba extract groups(250 and 500 mg·kg~(-1)). The anti-CRF effect in mice was evaluated by open field test, tail suspension test, and exhaustive swimming time, and the pathological morphology of skeletal muscle was evaluated by hematoxylin-eosin(HE) staining. The cancer cachexia model in C2C12 muscle cells was induced by C26 co-culture, and the cells were divided into a control group, a conditioned medium model group, and low-, medium-, and high-dose Cistanches Herba extract groups(62.5, 125, and 250 μg·mL~(-1)). The reactive oxygen species(ROS) content in each group was detected by flow cytometry, and the intracellular mitochondrial status was evaluated by transmission electron microscopy. The protein expression levels of hypoxia-inducible factor-1α(HIF-1α), BNIP3L, and Beclin-1 were detected by Western blot. Six effective constituents were screened out from Cistanches Herba. The core genes of Cistanches Herba in treating CRF were AKT1, IL-6, VEGFA, CASP3, JUN, EGFR, MYC, EGF, MAPK1, PTGS2, MMP9, IL-1B, FOS, and IL10, and the pathways related to CRF were AGE-RAGE and HIF-1α. Through GO enrichment analysis, it was found that the main biological functions involved were lipid peroxidation, nutrient deficiency, chemical stress, oxidative stress, oxygen content, and other biological processes. The results of the in vivo experiment showed that Cistanches Herba extract could significantly improve skeletal muscle atrophy in mice to relieve CRF. The in vitro experiment showed that Cistanches Herba extract could significantly reduce the content of intracellular ROS, the percentage of mitochondrial fragmentation, and the protein expression of Beclin-1 and increase the number of autophagosomes and the protein expression of HIF-1α and BNIP3L. Cistanches Herba showed a good anti-CRF effect, and its mechanism may be related to the key target proteins in the HIF-1α signaling pathway.


Subject(s)
Animals , Mice , Cistanche , Network Pharmacology , Beclin-1 , Reactive Oxygen Species , Plant Extracts , Drugs, Chinese Herbal/pharmacology , Molecular Docking Simulation , Medicine, Chinese Traditional , Neoplasms/genetics
16.
Chinese Journal of Natural Medicines (English Ed.) ; (6): 499-515, 2023.
Article in English | WPRIM | ID: wpr-982720

ABSTRACT

Natural products exhibit substantial impacts in the field of anti-hypoxic traetment. Hypoxia can cause altitude sickness and other negative effect on the body. Headache, coma, exhaustion, vomiting and, in severe cases, death are some of the clinical signs. Currently, hypoxia is no longer just a concern in plateau regions; it is also one of the issues that can not be ignored by urban residents. This review covered polysaccharides, alkaloids, saponins, flavonoids, peptides and traditional Chinese compound prescriptions as natural products to protect against hypoxia. The active ingredients, effectiveness and mechanisms were discussed. The related anti-hypoxic mechanisms involve increasing the hemoglobin (HB) content, glycogen content and adenosine triphosphate (ATP) content, removing excessive reactive oxygen species (ROS), reducing lipid peroxidation, regulating the levels of related enzymes in cells, protecting the structural and functional integrity of the mitochondria and regulating the expression of apoptosis-related genes. These comprehensive summaries are beneficial to anti-hypoxic research and provide useful information for the development of anti-hypoxic products.


Subject(s)
Humans , Biological Products/therapeutic use , Hypoxia/metabolism , Reactive Oxygen Species/metabolism , Adenosine Triphosphate/metabolism , Alkaloids
17.
Chinese Journal of Natural Medicines (English Ed.) ; (6): 279-291, 2023.
Article in English | WPRIM | ID: wpr-982699

ABSTRACT

Oxidative stress plays a crucial role in cadmium (Cd)-induced myocardial injury. Mitsugumin 53 (MG53) and its mediated reperfusion injury salvage kinase (RISK) pathway have been demonstrated to be closely related to myocardial oxidative damage. Potentilla anserina L. polysaccharide (PAP) is a polysaccharide with antioxidant capacity, which exerts protective effect on Cd-induced damage. However, it remains unknown whether PAP can prevent and treat Cd-induced cardiomyocyte damages. The present study was desgined to explore the effect of PAP on Cd-induced damage in H9c2 cells based on MG53 and the mediated RISK pathway. For in vitro evaluation, cell viability and apoptosis rate were analyzed by CCK-8 assay and flow cytometry, respectively. Furthermore, oxidative stress was assessed by 2',7'-dichlorodihydrofluorescein diacetate (DCFH-DA) staining and using superoxide dismutase (SOD), catalase (CAT), and glutathione/oxidized glutathione (GSH/GSSG) kits. The mitochondrial function was measured by JC-10 staining and ATP detection assay. Western blot was performed to detect the expression of proteins related to MG53, the RISK pathway, and apoptosis. The results indicated that Cd increased the levels of reactive oxygen species (ROS) in H9c2 cells. Cd decreased the activities of SOD and CAT and the ratio of GSH/GSSG, resulting in decreases in cell viability and increases in apoptosis. Interestingly, PAP reversed Cd-induced oxidative stress and cell apoptosis. Meanwhile, Cd reduced the expression of MG53 in H9c2 cells and inhibited the RISK pathway, which was mediated by decreasing the ratio of p-AktSer473/Akt, p-GSK3βSer9/GSK3β and p-ERK1/2/ERK1/2. In addition, Cd impaired mitochondrial function, which involved a reduction in ATP content and mitochondrial membrane potential (MMP), and an increase in the ratio of Bax/Bcl-2, cytoplasmic cytochrome c/mitochondrial cytochrome c, and Cleaved-Caspase 3/Pro-Caspase 3. Importantly, PAP alleviated Cd-induced MG53 reduction, activated the RISK pathway, and reduced mitochondrial damage. Interestingly, knockdown of MG53 or inhibition of the RISK pathway attenuated the protective effect of PAP in Cd-induced H9c2 cells. In sum, PAP reduces Cd-induced damage in H9c2 cells, which is mediated by increasing MG53 expression and activating the RISK pathway.


Subject(s)
Cadmium/metabolism , Caspase 3/metabolism , Potentilla/metabolism , Glycogen Synthase Kinase 3 beta/pharmacology , Proto-Oncogene Proteins c-akt/metabolism , Cytochromes c/metabolism , Glutathione Disulfide/pharmacology , Oxidative Stress , Myocytes, Cardiac , Reactive Oxygen Species/metabolism , Reperfusion Injury/metabolism , Apoptosis , Polysaccharides/pharmacology , Adenosine Triphosphate/metabolism
18.
Chinese Critical Care Medicine ; (12): 684-689, 2023.
Article in Chinese | WPRIM | ID: wpr-982655

ABSTRACT

OBJECTIVE@#To observe the ferroptosis triggered by in different pathways during cecal ligation and puncture (CLP)-induced liver injury in septic mice, and to investigate whether mitochondrial aldehyde dehydrogenase 2 (ALDH2) can alleviate sepsis-induced liver injury by inhibiting ferroptosis.@*METHODS@#Sixty 8-week-old male C57BL/6J mice were randomly divided into sham operation group (Sham group), CLP group, ferroptosis inhibitor ferrostain-1 (Fer-1) group, ALDH2-specific agonist Alda-1 group, iron chelator deferasirox Fe3+ chelate (DXZ) group and dimethyl sulfoxide (DMSO) group, with 10 mice in each group. The septic liver injury was induced by CLP in mice model. In the Sham group, only laparotomy was performed without ligation and puncture of the cecum. 10 mL/kg 5% DMSO, 5 mg/kg Fer-1, 50 mg/kg DXZ and 10 mg/kg Alda-1 were injected intraperitoneally 1 hour before CLP in the DMSO, Fer-1, DXZ and Alda-1 groups respectively. At 24 hours after operation, eyeball blood and liver tissue were collected from anesthetized mice. The hepatic structure and inflammatory infiltration were observed by hematoxylin-eosin (HE) staining. The levels of alanine aminotransferase (ALT), aspartate aminotransferase (AST) in serum, the levels of hepatic malondialdehyde (MDA), superoxide dismutase (SOD) and reactive oxygen species (ROS) were detected. Western blotting was used to detect the protein expressions of ALDH2, ferroptosis-related proteins glutathione peroxidase 4 (GPX4), ferroptosis suppressor protein 1 (FSP1) and transferrin receptor 1 (TFR1) in liver tissue.@*RESULTS@#Compared with Sham group, the mice in CLP group showed varying degrees of congestion, disorganized hepatocyte arrangement, inflammatory cell infiltration at 24 hours after operation. Compared with the CLP group, the mice in the Fer-1 group, DXZ group and Alda-1 group liver morphology, liver injury and inflammatory cell infiltration was improved. Compared with Sham group, the serum levels of ALT and AST, the contents of MDA and ROS, and the expression of TFR1 protein in CLP group were significantly increased, while the activity of SOD and the expressions of ALDH2, GPX4 and FSP1 protein in CLP group were significantly decreased. Compared with CLP group, serum ALT and AST levels in Fer-1, DXZ and Alda-1 groups were significantly decreased [ALT (U/L): 45.76±10.81, 37.30±2.98, 36.40±12.75 vs. 73.06±12.20, AST (U/L): 61.57±2.69, 52.41±6.92, 56.05±8.29 vs. 81.59±5.46, all P < 0.05], and the contents of MDA, ROS and TFR1 protein expression in liver tissue were significantly decreased [MDA (μmol/L): 0.60±0.10, 0.57±0.18, 0.83±0.39 vs. 1.61±0.30, ROS (fluorescence intensity): 270.34±9.64, 276.02±62.33, 262.05±18.55 vs. 455.38±36.07, TFR1/GAPDH: 0.90±0.04, 1.01±0.09, 0.55±0.08 vs. 1.18±0.06, all P < 0.05], and the SOD activity and ALDH2, GPX4 and FSP1 protein expressions in liver tissue were significantly increased [SOD (kU/g): 88.77±8.20, 88.37±4.47, 93.43±7.24 vs. 50.27±3.57, ALDH2/GAPDH: 1.10±0.15, 1.02±0.07, 1.14±0.07 vs. 0.70±0.04, GPX4/GAPDH: 1.02±0.12, 0.99±0.08, 1.05±0.19 vs. 0.71±0.10, FSP1/GAPDH: 1.06±0.24, 1.02±0.08, 0.93±0.09 vs. 0.66±0.03, all P < 0.05]. There was no significant difference in the parameters between DMSO group and CLP group.@*CONCLUSIONS@#Both GPX4 and FSP1 mediated ferroptosis are involved in liver injury in septic mice. Activation of ALDH2 and inhibition of ferroptosis can alleviatehepatic injury. ALDH2 may play a protective role by regulating FSP1 and GPX4 mediated ferroptosis.


Subject(s)
Mice , Male , Animals , Aldehyde Dehydrogenase, Mitochondrial , Ferroptosis , Reactive Oxygen Species , Chemical and Drug Induced Liver Injury, Chronic , Dimethyl Sulfoxide , Mice, Inbred C57BL , Sepsis , Disease Models, Animal
19.
Chinese Critical Care Medicine ; (12): 393-397, 2023.
Article in Chinese | WPRIM | ID: wpr-982600

ABSTRACT

OBJECTIVE@#To evaluate the effect of curcumin on renal mitochondrial oxidative stress, nuclear factor-κB/NOD-like receptor protein 3 (NF-κB/NLRP3) inflammatory body signaling pathway and tissue cell injury in rats with acute respiratory distress syndrome (ARDS).@*METHODS@#A total of 24 specific pathogen free (SPF)-grade healthy male Sprague-Dawley (SD) rats were randomly divided into control group, ARDS model group, and low-dose and high-dose curcumin groups, with 6 rats in each group. The ARDS rat model was reproduced by intratracheal administration of lipopolysaccharide (LPS) at 4 mg/kg via aerosol inhalation. The control group was given 2 mL/kg of normal saline. The low-dose and high-dose curcumin groups were administered 100 mg/kg or 200 mg/kg curcumin by gavage 24 hours after model reproduction, once a day. The control group and ARDS model group were given an equivalent amount of normal saline. After 7 days, blood samples were collected from the inferior vena cava, and the levels of neutrophil gelatinase-associated lipocalin (NGAL) in serum were determined by enzyme-linked immunosorbent assay (ELISA). The rats were sacrificed, and kidney tissues were collected. Reactive oxygen species (ROS) levels were determined by ELISA, superoxide dismutase (SOD) activity was detected using the xanthine oxidase method, and malondialdehyde (MDA) levels were determined by colorimetric method. The protein expressions of hypoxia-inducible factor-1α (HIF-1α), caspase-3, NF-κB p65, and Toll-like receptor 4 (TLR4) were detected by Western blotting. The mRNA expressions of HIF-1α, NLRP3, and interleukin-1β (IL-1β) were detected by reverse transcription-polymerase chain reaction (RT-PCR). Renal cell apoptosis was detected by TdT-mediated dUTP nick end labeling (TUNEL). The morphological changes in renal tubular epithelial cells and mitochondria were observed under a transmission electron microscope.@*RESULTS@#Compared with the control group, the ARDS model group exhibited kidney oxidative stress and inflammatory response, significantly elevated serum levels of kidney injury biomarker NGAL, activated NF-κB/NLRP3 inflammasome signaling pathway, increased kidney tissue cell apoptosis rate, and renal tubular epithelial cell damage and mitochondrial integrity destruction under transmission electron microscopy, indicating successful induction of kidney injury. Following curcumin intervention, the injury to renal tubular epithelial cells and mitochondria in the rats was significantly mitigated, along with a noticeable reduction in oxidative stress, inhibition of the NF-κB/NLRP3 inflammasome signaling pathway, and a significant decrease in kidney tissue cell apoptosis rate, demonstrating a certain dose-dependency. Compared with the ARDS model group, the high-dose curcumin group exhibited significantly reduced serum NGAL levels and kidney tissue MDA and ROS levels [NGAL (μg/L): 13.8±1.7 vs. 29.6±2.7, MDA (nmol/g): 115±18 vs. 300±47, ROS (kU/L): 75±19 vs. 260±15, all P < 0.05], significantly down-regulated protein expressions of HIF-1α, caspase-3, NF-κB p65, and TLR4 in the kidney tissue [HIF-1α protein (HIF-1α/β-actin): 0.515±0.064 vs. 0.888±0.055, caspase-3 protein (caspase-3/β-actin): 0.549±0.105 vs. 0.958±0.054, NF-κB p65 protein (NF-κB p65/β-actin): 0.428±0.166 vs. 0.900±0.059, TLR4 protein (TLR4/β-actin): 0.683±0.048 vs. 1.093±0.097, all P < 0.05], and significantly down-regulated mRNA expressions of HIF-1α, NLRP3, and IL-1β [HIF-1α mRNA (2-ΔΔCt): 2.90±0.39 vs. 9.49±1.87, NLRP3 mRNA (2-ΔΔCt): 2.07±0.21 vs. 6.13±1.32, IL-1β mRNA (2-ΔΔCt): 1.43±0.24 vs. 3.95±0.51, all P < 0.05], and significantly decreased kidney tissue cell apoptosis rate [(4.36±0.92)% vs. (27.75±8.31)%, P < 0.05], and significantly increased SOD activity (kU/g: 648±34 vs. 430±47, P < 0.05).@*CONCLUSIONS@#Curcumin can alleviate kidney injury in ARDS rats, and its mechanism may be related to the increasing in SOD activity, reduction of oxidative stress, and inhibition of the activation of the NF-κB/NLRP3 inflammasome signaling pathway.


Subject(s)
Male , Rats , Animals , Rats, Sprague-Dawley , NF-kappa B , Actins , Caspase 3 , Curcumin , Lipocalin-2 , Toll-Like Receptor 4 , Inflammasomes , NLR Family, Pyrin Domain-Containing 3 Protein , Reactive Oxygen Species , Saline Solution , Kidney , Superoxide Dismutase
20.
Neuroscience Bulletin ; (6): 1157-1172, 2023.
Article in English | WPRIM | ID: wpr-982467

ABSTRACT

Hv1 is the only voltage-gated proton-selective channel in mammalian cells. It contains a conserved voltage-sensor domain, shared by a large class of voltage-gated ion channels, but lacks a pore domain. Its primary role is to extrude protons from the cytoplasm upon pH reduction and membrane depolarization. The best-known function of Hv1 is the regulation of cytosolic pH and the nicotinamide adenine dinucleotide phosphate oxidase-dependent production of reactive oxygen species. Accumulating evidence indicates that Hv1 is expressed in nervous systems, in addition to immune cells and others. Here, we summarize the molecular properties, distribution, and physiological functions of Hv1 in the peripheral and central nervous systems. We describe the recently discovered functions of Hv1 in various neurological diseases, including brain or spinal cord injury, ischemic stroke, demyelinating diseases, and pain. We also summarize the current advances in the discovery and application of Hv1-targeted small molecules in neurological diseases. Finally, we discuss the current limitations of our understanding of Hv1 and suggest future research directions.


Subject(s)
Animals , Protons , Ion Channels/metabolism , Reactive Oxygen Species/metabolism , Brain/metabolism , NADPH Oxidases , Mammals/metabolism
SELECTION OF CITATIONS
SEARCH DETAIL