Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 20 de 75
Filter
1.
Chinese Medical Journal ; (24): 209-221, 2024.
Article in English | WPRIM | ID: wpr-1007603

ABSTRACT

BACKGROUND@#Bladder cancer, characterized by a high potential of tumor recurrence, has high lifelong monitoring and treatment costs. To date, tumor cells with intrinsic softness have been identified to function as cancer stem cells in several cancer types. Nonetheless, the existence of soft tumor cells in bladder tumors remains elusive. Thus, our study aimed to develop a micro-barrier microfluidic chip to efficiently isolate deformable tumor cells from distinct types of bladder cancer cells.@*METHODS@#The stiffness of bladder cancer cells was determined by atomic force microscopy (AFM). The modified microfluidic chip was utilized to separate soft cells, and the 3D Matrigel culture system was to maintain the softness of tumor cells. Expression patterns of integrin β8 (ITGB8), protein kinase B (AKT), and mammalian target of rapamycin (mTOR) were determined by Western blotting. Double immunostaining was conducted to examine the interaction between F-actin and tripartite motif containing 59 (TRIM59). The stem-cell-like characteristics of soft cells were explored by colony formation assay and in vivo studies upon xenografted tumor models.@*RESULTS@#Using our newly designed microfluidic approach, we identified a small fraction of soft tumor cells in bladder cancer cells. More importantly, the existence of soft tumor cells was confirmed in clinical human bladder cancer specimens, in which the number of soft tumor cells was associated with tumor relapse. Furthermore, we demonstrated that the biomechanical stimuli arising from 3D Matrigel activated the F-actin/ITGB8/TRIM59/AKT/mTOR/glycolysis pathways to enhance the softness and tumorigenic capacity of tumor cells. Simultaneously, we detected a remarkable up-regulation in ITGB8, TRIM59, and phospho-AKT in clinical bladder recurrent tumors compared with their non-recurrent counterparts.@*CONCLUSIONS@#The ITGB8/TRIM59/AKT/mTOR/glycolysis axis plays a crucial role in modulating tumor softness and stemness. Meanwhile, the soft tumor cells become more sensitive to chemotherapy after stiffening, that offers new insights for hampering tumor progression and recurrence.


Subject(s)
Animals , Mice , Humans , Proto-Oncogene Proteins c-akt/metabolism , Actins/metabolism , Neoplasm Recurrence, Local , TOR Serine-Threonine Kinases/metabolism , Urinary Bladder Neoplasms , Glycolysis , Cell Line, Tumor , Cell Proliferation , Mammals/metabolism , Tripartite Motif Proteins/metabolism , Intracellular Signaling Peptides and Proteins/metabolism , Integrin beta Chains
2.
Chinese journal of integrative medicine ; (12): 251-259, 2024.
Article in English | WPRIM | ID: wpr-1010332

ABSTRACT

OBJECTIVE@#To explore the mechanism of electroacupuncture (EA) in promoting recovery of the facial function with the involvement of autophagy, glial cell line-derived neurotrophic factor (GDNF), and phosphatidylinositol-3-kinase (PI3K)/mammalian target of rapamycin (mTOR) signaling pathway.@*METHODS@#Seventy-two male Sprague-Dawley rats were randomly allocated into the control, sham-operated, facial nerve injury (FNI), EA, EA+3-methyladenine (3-MA), and EA+GDNF antagonist groups using a random number table, with 12 rats in each group. An FNI rat model was established with facial nerve crushing method. EA intervention was conducted at Dicang (ST 4), Jiache (ST 6), Yifeng (SJ 17), and Hegu (LI 4) acupoints for 2 weeks. The Simone's 10-Point Scale was utilized to monitor the recovery of facial function. The histopathological evaluation of facial nerves was performed using hematoxylin-eosin (HE) staining. The levels of Beclin-1, light chain 3 (LC3), and P62 were detected by immunohistochemistry (IHC), immunofluorescence, and reverse transcription-polymerase chain reaction, respectively. Additionally, IHC was also used to detect the levels of GDNF, Rai, PI3K, and mTOR.@*RESULTS@#The facial functional scores were significantly increased in the EA group than the FNI group (P<0.05 or P<0.01). HE staining showed nerve axons and myelin sheaths, which were destroyed immediately after the injury, were recovered with EA treatment. The expressions of Beclin-1 and LC3 were significantly elevated and the expression of P62 was markedly reduced in FNI rats (P<0.01); however, EA treatment reversed these abnormal changes (P<0.01). Meanwhile, EA stimulation significantly increased the levels of GDNF, Rai, PI3K, and mTOR (P<0.01). After exogenous administration with autophagy inhibitor 3-MA or GDNF antagonist, the repair effect of EA on facial function was attenuated (P<0.05 or P<0.01).@*CONCLUSIONS@#EA could promote the recovery of facial function and repair the facial nerve damages in a rat model of FNI. EA may exert this neuroreparative effect through mediating the release of GDNF, activating the PI3K/mTOR signaling pathway, and further regulating the autophagy of facial nerves.


Subject(s)
Rats , Male , Animals , Rats, Sprague-Dawley , Electroacupuncture , Phosphatidylinositol 3-Kinase/metabolism , Facial Nerve Injuries/therapy , Phosphatidylinositol 3-Kinases/metabolism , Beclin-1 , Glial Cell Line-Derived Neurotrophic Factor , Signal Transduction , TOR Serine-Threonine Kinases/metabolism , Autophagy , Mammals/metabolism
3.
Chinese journal of integrative medicine ; (12): 213-221, 2024.
Article in English | WPRIM | ID: wpr-1010320

ABSTRACT

OBJECTIVE@#To investigate the effect and possible mechanism of hydroxysafflor yellow A (HSYA) on human immortalized keratinocyte cell proliferation and migration.@*METHODS@#HaCaT cells were treated with HSYA. Cell proliferation was detected by the cell counting kit-8 assay, and cell migration was measured using wound healing assay and Transwell migration assay. The mRNA and protein expression levels of heparin-binding epidermal growth factor (EGF)-like growth factor (HBEGF), EGF receptor (EGFR), phosphatidylinositol 3-kinase (PI3K), protein kinase B (AKT), mammalian target of rapamycin (mTOR), and hypoxia-inducible factor-1α (HIF-1α) were detected by quantitative real-time polymerase chain reaction (qRT-PCR) and Western blot, respectively. Circ_0084443-overexpressing HaCaT cells and empty plasmid HaCaT cells were constructed using the lentiviral stable transfection and treated with HSYA. The expression of circ_0084443 was detected by qRT-PCR.@*RESULTS@#HSYA (800 µmol/L) significantly promoted HaCaT cell proliferation and migration (P<0.05 or P<0.01). It also increased the mRNA and protein expression levels of HBEGF, EGFR, PI3K, AKT, mTOR and HIF-1α, and increased the phosphorylation levels of PI3K and AKT (P<0.05 or P<0.01). Furthermore, HSYA promoted HaCaT cell proliferation and migration via the HBEGF/EGFR and PI3K/AKT/mTOR signaling pathways (P<0.01). Circ_0084443 attenuated the mRNA expression levels of HBEGF, EGFR, PI3K, AKT, mTOR and HIF-1α (P<0.05). HSYA inhibited the circ_0084443 expression, further antagonized the inhibition of circ_0084443 on HBEGF, EGFR, PI3K, AKT, mTOR and HIF-1α, and promoted the proliferation of circ_0084443-overexpressing HaCaT cells (P<0.05 or P<0.01). However, HSYA could not influence the inhibitory effect of circ_0084443 on HaCaT cell migration (P>0.05).@*CONCLUSION@#HSYA played an accelerative role in HaCaT cell proliferation and migration, which may be attributable to activating HBEGF/EGFR and PI3K/AKT signaling pathways, and had a particular inhibitory effect on the keratinocyte negative regulator circ_0084443.


Subject(s)
Humans , Proto-Oncogene Proteins c-akt/metabolism , Phosphatidylinositol 3-Kinase , Phosphatidylinositol 3-Kinases/metabolism , ErbB Receptors/genetics , TOR Serine-Threonine Kinases/metabolism , Cell Proliferation , RNA, Messenger/genetics , Cell Movement , Cell Line, Tumor , Chalcone/analogs & derivatives , Quinones
4.
Journal of Southern Medical University ; (12): 552-559, 2023.
Article in Chinese | WPRIM | ID: wpr-986961

ABSTRACT

OBJECTIVE@#To evaluate the regulatory effect of berberine on autophagy and apoptosis balance of fibroblast-like synoviocytes (FLSs) from patients with in rheumatoid arthritis (RA) and explore the mechanism.@*METHODS@#The inhibitory effect of 10, 20, 30, 40, 50, 60, 70, and 80 μmol/L berberine on RA-FLS proliferation was assessed using CCK-8 method. Annexin V/PI and JC-1 immunofluorescence staining was used to analyze the effect of berberine (30 μmol/L) on apoptosis of 25 ng/mL TNF-α- induced RA-FLSs, and Western blotting was performed to detect the changes in the expression levels of autophagy- and apoptosis-related proteins. The cells were further treated with the autophagy inducer RAPA and the autophagy inhibitor chloroquine to observe the changes in autophagic flow by laser confocal detection of mCherry-EGFP-LC3B. RA-FLSs were treated with the reactive oxygen species (ROS) mimic H2O2 or the ROS inhibitor NAC, and the effects of berberine on ROS, mTOR and p-mTOR levels were observed.@*RESULTS@#The results of CCK-8 assay showed that berberine significantly inhibited the proliferation of RA-FLSs in a time- and concentration-dependent manner. Flow cytometry and JC-1 staining showed that berberine (30 μmol/L) significantly increased apoptosis rate (P < 0.01) and reduced the mitochondrial membrane potential of RA-FLSs (P < 0.05). Berberine treatment obviously decreased the ratios of Bcl-2/Bax (P < 0.05) and LC3B-II/I (P < 0.01) and increased the expression of p62 protein in the cells (P < 0.05). Detection of mCherry-EGFP-LC3B autophagy flow revealed obvious autophagy flow block in berberine-treated RA-FLSs. Berberine significantly reduced the level of ROS in TNF-α-induced RA-FLSs and upregulated the expression level of autophagy-related protein p-mTOR (P < 0.01); this effect was regulated by ROS level, and the combined use of RAPA significantly reduced the pro-apoptotic effect of berberine in RA-FLSs (P < 0.01).@*CONCLUSION@#Berberine can inhibit autophagy and promote apoptosis of RA-FLSs by regulating the ROS-mTOR pathway.


Subject(s)
Humans , Synoviocytes , Berberine/metabolism , Reactive Oxygen Species/metabolism , Tumor Necrosis Factor-alpha/metabolism , Hydrogen Peroxide/metabolism , Sincalide/metabolism , Cell Proliferation , Arthritis, Rheumatoid/metabolism , Signal Transduction , TOR Serine-Threonine Kinases/metabolism , Apoptosis , Fibroblasts , Autophagy , Cells, Cultured
5.
Biomedical and Environmental Sciences ; (12): 60-75, 2023.
Article in English | WPRIM | ID: wpr-970291

ABSTRACT

OBJECTIVE@#This study investigated the effects of bis (2-butoxyethyl) phthalate (BBOP) on the onset of male puberty by affecting Leydig cell development in rats.@*METHODS@#Thirty 35-day-old male Sprague-Dawley rats were randomly allocated to five groups mg/kg bw per day that were gavaged for 21 days with BBOP at 0, 10, 100, 250, or 500 mg/kg bw per day. The hormone profiles; Leydig cell morphological metrics; mRNA and protein levels; oxidative stress; and AKT, mTOR, ERK1/2, and GSK3β pathways were assessed.@*RESULTS@#BBOP at 250 and/or 500 mg/kg bw per day decreased serum testosterone, luteinizing hormone, and follicle-stimulating hormone levels mg/kg bw per day (P < 0.05). BBOP at 500 mg/kg bw per day decreased Leydig cell number mg/kg bw per day and downregulated Cyp11a1, Insl3, Hsd11b1, and Dhh in the testes, and Lhb and Fshb mRNAs in the pituitary gland (P < 0.05). The malondialdehyde content in the testis significantly increased, while Sod1 and Sod2 mRNAs were markedly down-regulated, by BBOP treatment at 250-500 mg/kg bw per day (P < 0.05). Furthermore, BBOP at 500 mg/kg bw per day decreased AKT1/AKT2, mTOR, and ERK1/2 phosphorylation, and GSK3β and SIRT1 levels mg/kg bw per day (P < 0.05). Finally, BBOP at 100 or 500 μmol/L induced ROS and apoptosis in Leydig cells after 24 h of treatment in vitro (P < 0.05).@*CONCLUSION@#BBOP delays puberty onset by increasing oxidative stress and apoptosis in Leydig cells in rats.@*UNLABELLED@#The graphical abstract is available on the website www.besjournal.com.


Subject(s)
Rats , Male , Animals , Leydig Cells/metabolism , Testosterone , Glycogen Synthase Kinase 3 beta/pharmacology , Rats, Sprague-Dawley , Sexual Maturation , Testis , Oxidative Stress , TOR Serine-Threonine Kinases/metabolism , Apoptosis
6.
Biomedical and Environmental Sciences ; (12): 1028-1044, 2023.
Article in English | WPRIM | ID: wpr-1007879

ABSTRACT

OBJECTIVE@#To explore whether the protein Deglycase protein 1 (DJ1) can ameliorate Alzheimer's disease (AD)-like pathology in Amyloid Precursor Protein/Presenilin 1 (APP/PS1) double transgenic mice and its possible mechanism to provide a theoretical basis for exploring the pathogenesis of AD.@*METHODS@#Adeno-associated viral vectors (AAV) of DJ1-overexpression or DJ1-knockdown were injected into the hippocampus of 7-month-old APP/PS1 mice to construct models of overexpression or knockdown. Mice were divided into the AD model control group (MC), AAV vector control group (NC), DJ1-overexpression group (DJ1 +), and DJ1-knockdown group (DJ1 -). After 21 days, the Morris water maze test, immunohistochemistry, immunofluorescence, and western blotting were used to evaluate the effects of DJ1 on mice.@*RESULTS@#DJ1 + overexpression decreased the latency and increased the number of platform traversals in the water maze test. DJ1 - cells were cured and atrophied, and the intercellular structure was relaxed; the number of age spots and the expression of AD-related proteins were significantly increased. DJ1 + increased the protein expression of Nuclear factor erythroid 2-related factor 2 (NRF2), heme oxygenase-1 (HO-1), light chain 3 (LC3), phosphorylated AMPK (p-AMPK), and B cell lymphoma-2 (BCL-2), as well as the antioxidant levels of total superoxide dismutase (T-SOD), total antioxidant capacity (T-AOC), and Glutathione peroxidase (GSH-PX), while decreasing the levels of Kelch-like hydrates-associated protein 1 (Keap1), mammalian target of rapamycin (mTOR), p62/sequestosome1 (p62/SQSTM1), Caspase3, and malondialdehyde (MDA).@*CONCLUSION@#DJ1-overexpression can ameliorate learning, memory, and AD-like pathology in APP/PS1 mice, which may be related to the activation of the NRF2/HO-1 and AMPK/mTOR pathways by DJ1.


Subject(s)
Animals , Mice , Alzheimer Disease/therapy , AMP-Activated Protein Kinases/metabolism , Amyloid beta-Protein Precursor/metabolism , Antioxidants/metabolism , Disease Models, Animal , Hippocampus/metabolism , Kelch-Like ECH-Associated Protein 1/metabolism , Mammals/metabolism , Mice, Inbred C57BL , Mice, Transgenic , NF-E2-Related Factor 2/metabolism , Presenilin-1/metabolism , TOR Serine-Threonine Kinases/metabolism
7.
Chinese Medical Journal ; (24): 2983-2992, 2023.
Article in English | WPRIM | ID: wpr-1007542

ABSTRACT

BACKGROUND@#Posttraumatic stress disorder (PTSD) and depression are highly comorbid. Psilocybin exerts substantial therapeutic effects on depression by promoting neuroplasticity. Fear extinction is a key process in the mechanism of first-line exposure-based therapies for PTSD. We hypothesized that psilocybin would facilitate fear extinction by promoting hippocampal neuroplasticity.@*METHODS@#First, we assessed the effects of psilocybin on percentage of freezing time in an auditory cued fear conditioning (FC) and fear extinction paradigm in mice. Psilocybin was administered 30 min before extinction training. Fear extinction testing was performed on the first day; fear extinction retrieval and fear renewal were tested on the sixth and seventh days, respectively. Furthermore, we verified the effect of psilocybin on hippocampal neuroplasticity using Golgi staining for the dendritic complexity and spine density, Western blotting for the protein levels of brain derived neurotrophic factor (BDNF) and mechanistic target of rapamycin (mTOR), and immunofluorescence staining for the numbers of doublecortin (DCX)- and bromodeoxyuridine (BrdU)-positive cells.@*RESULTS@#A single dose of psilocybin (2.5 mg/kg, i.p.) reduced the increase in the percentage of freezing time induced by FC at 24 h, 6th day and 7th day after administration. In terms of structural neuroplasticity, psilocybin rescued the decrease in hippocampal dendritic complexity and spine density induced by FC; in terms of neuroplasticity related proteins, psilocybin rescued the decrease in the protein levels of hippocampal BDNF and mTOR induced by FC; in terms of neurogenesis, psilocybin rescued the decrease in the numbers of DCX- and BrdU-positive cells in the hippocampal dentate gyrus induced by FC.@*CONCLUSIONS@#A single dose of psilocybin facilitated rapid and sustained fear extinction; this effect might be partially mediated by the promotion of hippocampal neuroplasticity. This study indicates that psilocybin may be a useful adjunct to exposure-based therapies for PTSD and other mental disorders characterized by failure of fear extinction.


Subject(s)
Humans , Mice , Animals , Psilocybin/metabolism , Fear , Extinction, Psychological , Brain-Derived Neurotrophic Factor/metabolism , Bromodeoxyuridine/pharmacology , Hippocampus/metabolism , Neuronal Plasticity , TOR Serine-Threonine Kinases/metabolism
8.
Journal of Integrative Medicine ; (12): 62-76, 2023.
Article in English | WPRIM | ID: wpr-971641

ABSTRACT

OBJECTIVE@#The current study evaluated various new colchicine analogs for their anticancer activity and to study the primary mechanism of apoptosis and in vivo antitumor activity of the analogs with selective anticancer properties and minimal toxicity to normal cells.@*METHODS@#Sulforhodamine B (SRB) assay was used to screen various colchicine analogs for their in vitro cytotoxicity. The effect of N-[(7S)-1,2,3-trimethoxy-9-oxo-10-(pyrrolidine-1-yl)5,6,7,9-tetrahydrobenzo[a] heptalene-7-yl] acetamide (IIIM-067) on clonogenicity, apoptotic induction, and invasiveness of A549 cells was determined using a clonogenic assay, scratch assay, and staining with 4',6-diamidino-2-phenylindole (DAPI) and annexin V/propidium iodide. Mitochondrial membrane potential (MMP) and reactive oxygen species (ROS) levels were observed using fluorescence microscopy. Western blot analysis was used to quantify expression of proteins involved in apoptosis, cell cycle, and phosphatidylinositol 3-kinase (PI3K)/protein kinase B (AKT)/mammalian target of rapamycin (mTOR) signaling. Pharmacokinetic and in vivo efficacy studies against Ehrlich ascites carcinoma (EAC) and Ehrlich solid tumor models were conducted using Swiss albino mice.@*RESULTS@#IIIM-067 showed potent cytotoxicity and better selectivity than all other colchicine analogs screened in this study. The selective activity of IIIM-067 toward A549 cells was higher among other cancer cell lines, with a selectivity index (SI) value of 2.28. IIIM-067 demonstrated concentration- and time-dependent cytotoxicity against A549 cells with half-maximal inhibitory concentration values of 0.207, 0.150 and 0.106 μmol/L at 24, 48 and 72 h, respectively. It also had reduced toxicity to normal cells (SI > 1) than the parent compound colchicine (SI = 1). IIIM-067 reduced the clonogenic ability of A549 cells in a dose-dependent manner. IIIM-067 enhanced ROS production from 24.6% at 0.05 μmol/L to 82.1% at 0.4 μmol/L and substantially decreased the MMP (100% in control to 5.6% at 0.4 μmol/L). The annexin V-FITC assay demonstrated 78% apoptosis at 0.4 μmol/L. IIIM-067 significantly (P < 0.5) induced the expression of various intrinsic apoptotic pathway proteins, and it differentially regulated the PI3K/AKT/mTOR signaling pathway. Furthermore, IIIM-067 exhibited remarkable in vivo anticancer activity against the murine EAC model, with tumor growth inhibition (TGI) of 67.0% at a dose of 6 mg/kg (i.p.) and a reduced mortality compared to colchicine. IIIM-067 also effectively inhibited the tumor growth in the murine solid tumor model with TGI rates of 48.10%, 55.68% and 44.00% at doses of 5 mg/kg (i.p.), 6 mg/kg (i.p.) and 7 mg/kg (p.o.), respectively.@*CONCLUSION@#IIIM-067 exhibited significant anticancer activity with reduced toxicity both in vitro and in vivo and is a promising anticancer candidate. However, further studies are required in clinical settings to fully understand its potential.


Subject(s)
Animals , Mice , Proto-Oncogene Proteins c-akt/metabolism , Antineoplastic Agents, Phytogenic/pharmacology , Phosphatidylinositol 3-Kinases/metabolism , Reactive Oxygen Species/metabolism , TOR Serine-Threonine Kinases/metabolism , Colchicine/pharmacology , Apoptosis , Cell Line, Tumor , Cell Proliferation , Mammals/metabolism
9.
Journal of Southern Medical University ; (12): 191-198, 2023.
Article in Chinese | WPRIM | ID: wpr-971514

ABSTRACT

OBJECTIVE@#To investigate the effects of different manners of heat exposure on thoracic aorta injury in spontaneously hypertensive rats (SHRs) and explore the underlying mechanism.@*METHODS@#Normal 6 to 7-week-old male SHRs were randomized into control group (cage at room temperature), intermittent heat exposure group (SHR-8 group, exposed to 32 ℃ for 8 h daily for 7 days) and SHR-24 group (with continuous exposure to 32 ℃ for 7 days). After the treatments, the pathologies of the thoracic aorta of the rats were observed with HE staining, and the expressions of Beclin1, LC3B and p62 were detected with Western blotting and immunofluorescence assay; TUNEL staining was used to observe cell apoptosis in the thoracic aorta, and the expressions of caspase-3, Bax, and Bcl-2 were detected using Western blotting. The effects of intraperitoneal injections of 3-MA (an autophagy agonist), rapamycin (an autophagy inhibitor) or compound C 30 min before intermittent heat exposure on the expressions of proteins associated with autophagy, apoptosis and the AMPK/mTOR/ULK1 pathway in the aorta were examined with immunohistochemistry.@*RESULTS@#In SHR-8 group, the rats showed incomplete aortic intima with disordered cell distribution and significantly increased expressions of Beclin1, LC3II/LC3I and Bax, lowered expressions of p62 and Bcl-2, and increased apoptotic cells in the thoracic aorta (P < 0.05). Pretreatment with 3-MA obviously inhibited the expressions of autophagy- and apoptosis-related proteins, whereas rapamycin promoted their expressions. Compared with the control group, the rats in SHR-8 group had significantly down-regulated p-mTOR and up-regulated p-AMPK and p-ULK1 expression of in the aorta; Treatment with compound C obviously lowered the expressions of p-AMPK and p-ULK1 and those of LC3B and Beclin1 as well.@*CONCLUSION@#In SHRs, intermittent heat exposure causes significant pathologies and promotes autophagy and apoptosis in the thoracic aorta possibly by activating the AMPK/mTOR/ULK1 pathway.


Subject(s)
Rats , Male , Animals , Rats, Inbred SHR , AMP-Activated Protein Kinases/metabolism , bcl-2-Associated X Protein/metabolism , Aorta, Thoracic , Beclin-1 , Hot Temperature , TOR Serine-Threonine Kinases/metabolism , Proto-Oncogene Proteins c-bcl-2/metabolism , Apoptosis , Aortic Diseases , Autophagy , Autophagy-Related Protein-1 Homolog/metabolism
10.
Journal of Experimental Hematology ; (6): 38-44, 2023.
Article in Chinese | WPRIM | ID: wpr-971099

ABSTRACT

OBJECTIVE@#To investigate the influence and mechanism of atorvastatin on glycolysis of adriamycin resistant acute promyelocytic leukemia (APL) cell line HL-60/ADM.@*METHODS@#HL-60/ADM cells in logarithmic growth phase were treated with different concentrations of atorvastatin, then the cell proliferation activity was measured by CCK-8 assay, the apoptosis was detected by flow cytometry, the glycolytic activity was checked by glucose consumption test, and the protein expressions of PTEN, p-mTOR, PKM2, HK2, P-gp and MRP1 were detected by Western blot. After transfection of PTEN-siRNA into HL-60/ADM cells, the effects of low expression of PTEN on atorvastatin regulating the behaviors of apoptosis and glycolytic metabolism in HL-60/ADM cells were further detected.@*RESULTS@#CCK-8 results showed that atorvastatin could inhibit the proliferation of HL-60/ADM cells in a concentration-dependent and time-dependent manner (r=0.872, r=0.936), and the proliferation activity was inhibited most significantly when treated with 10 μmol/L atorvastatin for 24 h, which was decreased to (32.3±2.18)%. Flow cytometry results showed that atorvastatin induced the apoptosis of HL-60/ADM cells in a concentration-dependent manner (r=0.796), and the apoptosis was induced most notably when treated with 10 μmol/L atorvastatin for 24 h, which reached to (48.78±2.95)%. The results of glucose consumption test showed that atorvastatin significantly inhibited the glycolytic activity of HL-60/ADM cells in a concentration-dependent and time-dependent manner (r=0.915, r=0.748), and this inhibition was most strikingly when treated with 10 μmol/L atorvastatin for 24 h, reducing the relative glucose consumption to (46.53±1.71)%. Western blot indicated that the expressions of p-mTOR, PKM2, HK2, P-gp and MRP1 protein were decreased in a concentration-dependent manner (r=0.737, r=0.695, r=0.829, r=0.781, r=0.632), while the expression of PTEN protein was increased in a concentration-dependent manner (r=0.531), when treated with different concentrations of atorvastatin for 24 h. After PTEN-siRNA transfected into HL-60/ADM cells, it showed that low expression of PTEN had weakened the promoting effect of atorvastatin on apoptosis and inhibitory effect on glycolysis and multidrug resistance.@*CONCLUSION@#Atorvastatin can inhibit the proliferation, glycolysis, and induce apoptosis of HL-60/ADM cells. It may be related to the mechanism of increasing the expression of PTEN, inhibiting mTOR activation, and decreasing the expressions of PKM2 and HK2, thus reverse drug resistance.


Subject(s)
Humans , Atorvastatin/pharmacology , PTEN Phosphohydrolase/pharmacology , Sincalide/metabolism , Drug Resistance, Neoplasm/genetics , TOR Serine-Threonine Kinases/metabolism , Leukemia, Promyelocytic, Acute/drug therapy , Doxorubicin/pharmacology , Apoptosis , RNA, Small Interfering/pharmacology , Glycolysis , Glucose/therapeutic use , Cell Proliferation
11.
Chinese Journal of Cellular and Molecular Immunology ; (12): 626-632, 2023.
Article in Chinese | WPRIM | ID: wpr-981909

ABSTRACT

Objective To investigate the effect of H2O2-induced oxidative stress on autophagy and apoptosis of human bone marrow mesenchymal stem cells (hBMSCs). Methods hBMSCs were isolated and cultured. The cells were divided into control group, 3-MA group, H2O2 group, H2O2 combined with 3-MA group. DCFH-DA staining was used to analyze the level of reactive oxygen species (ROS). hBMSCs were treated with 0, 50, 100, 200, 400 μmol/L H2O2, and then the cell viability was detected by CCK-8 assay. The level of autophagy was detected by monodansylcadaverine (MDC) staining and LysoTracker Red staining. The cell apoptosis was detected by flow cytometry. Western blotting was used to detect the expression of beclin 1, mTOR, phosphorylated mTOR (p-mTOR), cleaved caspase-3(c-caspase-3) and caspase-3 proteins. Results Compared with the control group and 3-MA group, ROS level and autophagosomes were increased and the proliferation and apoptosis were decreased in H2O2 group. The protein expression of beclin 1, mTOR, c-caspase-3 was up-regulated, while the p-mTOR was down-regulated. Compared with the 3-MA group, the H2O2 combined with 3-MA group also had an increased ROS level and autophagosomes, but not with significantly increased apoptosis rate; The protein expression of beclin 1, mTOR, c-caspase-3 was up-regulated, and the p-mTOR was down-regulated. Conclusion H2O2 can induce hMSCs to trigger oxidative stress response. It enhances the autophagy and inhibits the proliferation and apoptosis of hBMSCs.


Subject(s)
Humans , Beclin-1/metabolism , Caspase 3/metabolism , Reactive Oxygen Species/metabolism , Hydrogen Peroxide/pharmacology , Apoptosis , TOR Serine-Threonine Kinases/metabolism , Oxidative Stress , Autophagy , Mesenchymal Stem Cells/metabolism , Cell Proliferation
12.
Chinese Journal of Cellular and Molecular Immunology ; (12): 516-525, 2023.
Article in Chinese | WPRIM | ID: wpr-981894

ABSTRACT

Objective To investigate the effect of viral myocarditis serum exosomal miR-320 on apoptosis of cardiomyocytes and its mechanism. Methods The model of viral myocarditis mice was established by intraperitoneal injection of Coxsackie virus B3. Serum exosomes were extracted by serum exosome extraction kit and co-cultured with cardiomyocytes. The uptake of exosomes by cardiomyocytes was detected by laser confocal microscopy. Cardiomyocytes were transfected with miR-320 inhibitor or mimic, and the expression level of miR-320 was detected by real-time quantitative PCR. Flow cytometry was used to detect cardiomyocyte apoptosis rate, and the expression levels of B cell lymphoma 2 (Bcl2) and Bcl2-related X protein (BAX) were tested by Western blot analysis. The prediction of miR-320 target genes and GO and KEGG enrichment analysis were tested by online database. The relationship between miR-320 and its target gene phosphoinositide-3-kinase regulatory subunit 1(Pik3r1) was examined by luciferase reporter gene. The effect of miR-320 on AKT/mTOR pathway protein was detected by Western blot analysis. Results Viral myocarditis serum exosomes promoted cardiomyocyte apoptosis, and increased the level of BAX while the level of Bcl2 was decreased. miR-320 was significantly up-regulated in myocardial tissue of viral myocarditis mice, and both pri-miR-320 and mature of miR-320 were up-regulated greatly in cardiomyocytes. The level of miR-320 in cardiomyocytes treated with viral myocarditis serum exosomes was significantly up-regulated, while transfection of miR-320 inhibitor counteracted miR-320 overexpression and reduced apoptosis rate caused by exosomes. Pik3r1 is the target gene of miR-320, and its overexpression reversed cardiomyocyte apoptosis induced by miR-320 up-regulation. The overexpression of miR-320 inhibited AKT/mTOR pathway activation. Conclusion Viral myocarditis serum exosome-derived miR-320 promotes apoptosis of mouse cardiomyocytes by inhibiting AKT/mTOR pathway by targeting Pik3r1.


Subject(s)
Mice , Animals , Myocytes, Cardiac , Phosphatidylinositol 3-Kinase/metabolism , Proto-Oncogene Proteins c-akt/metabolism , Myocarditis/pathology , Exosomes/metabolism , bcl-2-Associated X Protein/metabolism , MicroRNAs/metabolism , TOR Serine-Threonine Kinases/metabolism , Apoptosis/genetics
13.
China Journal of Chinese Materia Medica ; (24): 1760-1769, 2023.
Article in Chinese | WPRIM | ID: wpr-981393

ABSTRACT

The present study aimed to investigate the effect of diosgenin on mammalian target of rapamycin(mTOR), fatty acid synthase(FASN), hypoxia inducible factor-1α(HIF-1α), and vascular endothelial growth factor A(VEGFA) expression in liver tissues of rats with non-alcoholic fatty liver disease(NAFLD) and explore the mechanism of diosgenin on lipogenesis and inflammation in NAFLD. Forty male SD rats were divided into a normal group(n=8) fed on the normal diet and an experimental group(n=32) fed on the high-fat diet(HFD) for the induction of the NAFLD model. After modeling, the rats in the experimental group were randomly divided into an HFD group, a low-dose diosgenin group(150 mg·kg~(-1)·d~(-1)), a high-dose diosgenin group(300 mg·kg~(-1)·d~(-1)), and a simvastatin group(4 mg·kg~(-1)·d~(-1)), with eight rats in each group. The drugs were continuously given by gavage for eight weeks. The levels of triglyceride(TG), total cholesterol(TC), low-density lipoprotein cholesterol(LDL-C), alanine transaminase(ALT), and aspartate transaminase(AST) in the serum were detected by the biochemical method. The content of TG and TC in the liver was detected by the enzyme method. Enzyme-linked immunosorbent assay(ELISA) was used to measure interleukin 1β(IL-1β) and tumor necrosis factor α(TNF-α) in the serum. Lipid accumulation in the liver was detected by oil red O staining. Pathological changes of liver tissues were detected by hematoxylin-eosin(HE) staining. The mRNA and protein expression levels of mTOR, FASN, HIF-1α, and VEGFA in the liver of rats were detected by real-time fluorescence-based quantitative polymerase chain reaction(PCR) and Western blot, respectively. Compared with the normal group, the HFD group showed elevated body weight and levels of TG, TC, LDL-C, ALT, AST, IL-1β, and TNF-α(P<0.01), increased lipid accumulation in the liver(P<0.01), obvious liver steatosis, up-regulated mRNA expression levels of mTOR, FASN, HIF-1α, and VEGFA(P<0.01), and increased protein expression levels of p-mTOR, FASN, HIF-1α, and VEGFA(P<0.01). Compared with the HFD group, the groups with drug treatment showed lowered body weight and levels of TG, TC, LDL-C, ALT, AST, IL-1β, and TNF-α(P<0.05, P<0.01), reduced lipid accumulation in the liver(P<0.01), improved liver steatosis, decreased mRNA expression levels of mTOR, FASN, HIF-1α, and VEGFA(P<0.05, P<0.01), and declining protein expression levels of p-mTOR, FASN, HIF-1α, and VEGFA(P<0.01). The therapeutic effect of the high-dose diosgenin group was superior to that of the low-dose diosgenin group and the simvastatin group. Diosgenin may reduce liver lipid synthesis and inflammation and potentiate by down-regulating the mTOR, FASN, HIF-1α, and VEGFA expression, playing an active role in preventing and treating NAFLD.


Subject(s)
Rats , Male , Animals , Non-alcoholic Fatty Liver Disease/metabolism , Vascular Endothelial Growth Factor A/metabolism , Tumor Necrosis Factor-alpha/metabolism , Cholesterol, LDL , Rats, Sprague-Dawley , Liver , Inflammation/metabolism , Diet, High-Fat/adverse effects , TOR Serine-Threonine Kinases/metabolism , RNA, Messenger/metabolism , Body Weight , Mammals
14.
China Journal of Orthopaedics and Traumatology ; (12): 1136-1141, 2023.
Article in Chinese | WPRIM | ID: wpr-1009200

ABSTRACT

OBJECTIVE@#To explore pro-oxidative state of rotator cuff tissue and expression levels of Beclin-1 and mam-malian target of rapamycin(mTOR) in patients with acute and chronic rotator cuff injury, and then analyzed relationship between rotator cuff injury and oxidative stress and autophagy.@*METHODS@#Forty patients with rotator cuff injury were seleceted from July 2019 to December 2020, and divided into male chronic injury group, male acute injury group, female chronic injury group, and female acute injury group, 10 patients in each group. All patients were performed rotator cuff repair under arthroscopy. The sample of tendon at the rotator cuff injury site of the patient was taken during operation, and total reactive oxygen species (ROS) and superoxide dismutase(SOD) were detected by detection kit;expression of Beclin-1 and mTOR mRNA were detected by reverse transcription-polymerase chain reaction (RT-PCR), and Western-blot was applied to detect protein expression of Beclin-1 and p-mTOR/mTOR.@*RESULTS@#There were no significant difference in expression of ROS, SOD, Beclin-1mRNA and mTOR mRNA between male and female chronic injury groups, and between male and female acute injury groups (P>0.05); ROS, SOD and Beclin-1mRNA in male chronic injury group were higher than those in male chronic injury group, while mTOR mRNAand protein decreased (P<0.05);ROS, SOD and Beclin-1 mRNA in female chronic injury group were up-regulated compared with female acute injury group, while mTOR mRNA was down-regulated (P<0.05).@*CONCLUSION@#Chronic rotator cuff injury is more likely to stimulate the pro-oxidation state of rotator cuff tissue than acute rotator cuff injury, which could up-regulating expression of autophagy factor Beclin-1 and down-regulating expression of mTOR. Therefore, patients with chronic rotator cuff injury may have higher levels of oxidative stress and autophagy.


Subject(s)
Female , Humans , Male , Beclin-1/metabolism , Reactive Oxygen Species/metabolism , RNA, Messenger/metabolism , Rotator Cuff/surgery , Rotator Cuff Injuries/surgery , Superoxide Dismutase/metabolism , TOR Serine-Threonine Kinases/metabolism
15.
China Journal of Chinese Materia Medica ; (24): 6693-6701, 2023.
Article in Chinese | WPRIM | ID: wpr-1008867

ABSTRACT

This study investigated the effect of eleutheroside B on apoptosis and autophagy of lung cancer A549 and H460 cells and its molecular mechanism. MTT assay was used to detect the cytotoxicity of eleutheroside B at 5, 10, 15, 20, 25, 30, 35, 40, and 45 mmol·L~(-1) on lung cancer cells. Trypan blue exclusion assay was used to detect the effect of eleutheroside B on the survival rate of lung cancer A549 and H460 cells at different time. Colony formation assay was used to detect the effect of eleutheroside B on the proliferation of lung cancer A549 and H460 cells. AO/EB fluorescence double staining and Hoechst 33342 fluorescence staining were used to detect the effect of eleutheroside B on apoptosis of lung cancer A549 and H460 cells, and Western blot was used to detect apoptosis-related proteins to explore the apoptosis-related molecular mechanism. AO fluorescence staining and Western blot were used to detect the expression of autophagic vesicles and autophagy-related proteins P62 and LC3. The results showed that compared with the control group, eleutheroside B inhibited the growth of lung cancer A549 and H460 cells in a concentration-dependent manner. The optimal effect time of eleutheroside B on lung cancer A549 and H460 cells was 24 h, and the optimal concentrations were 28.64 and 22.16 mmol·L~(-1), respectively. Eleutheroside B could inhibit the colony formation of A549 and H460 cells. Compared with the control group, eleutheroside B could promote the formation of apoptotic bodies and induce cell apoptosis, as well as induce the expression of mitochondrial pathway-related proteins. Under the effect of eleutheroside B, the acidic autophagy vacuole in lung cancer cells increased, LC3Ⅱ expression increased, P62 protein expression decreased, and PI3K, p-Akt, and p-mTOR protein expression decreased in the PI3K/Akt/mTOR pathway. Studies have shown that eleutheroside B can inhibit the growth of lung cancer cells, reduce colony formation, induce apoptosis of lung cancer cells through mitochondrial pathway, and induce autophagy. The mechanism may be related to the PI3K/Akt/mTOR pathway.


Subject(s)
Humans , Lung Neoplasms/metabolism , Proto-Oncogene Proteins c-akt/metabolism , Phosphatidylinositol 3-Kinases/metabolism , Signal Transduction , TOR Serine-Threonine Kinases/metabolism , Apoptosis , Apoptosis Regulatory Proteins , Autophagy , Cell Proliferation , Cell Line, Tumor , Glucosides , Phenylpropionates
16.
China Journal of Chinese Materia Medica ; (24): 5908-5914, 2023.
Article in Chinese | WPRIM | ID: wpr-1008789

ABSTRACT

This study aimed to investigate the mechanism and target sites of Shenfu Injection in the intervention of chronic heart fai-lure based on the PI3K/Akt/mTOR autophagy signaling pathway. The chronic heart failure model was induced in rats by subcutaneous injection of isoproterenol. The model rats were randomly divided into model group, Shenfu Injection group, and 3-methyladenine autophagy inhibitor(3-MA) group. A normal group was also set up. After 15 days of administration, cardiac function indexes of the rats were detected by echocardiography. The serum N-terminal pro-B-type natriuretic peptide(NT-proBNP) levels were measured using the ELISA. HE and Masson staining was performed to observe the morphological changes in myocardial tissues, and electron microscopy was used to observe the autophagosomes in myocardial tissues. Western blot was conducted to measure the changes in autophagy-related proteins(LC3 Ⅱ/Ⅰ and p62), PI3K, Akt, mTOR, and phosphorylation levels. The results showed that compared with normal group, model group in rats led to reduced cardiac function, significant activation of cardiac autophagy, increased fibrotic lesions in myocardial tissues, structural disorder of the myocardium, increased autophagosomes, and cytoplasmic vacuolization. Compared with model group, Shenfu Injection group in rats led to cardiac function significantly improved, myocardial fibrosis decreased, and the number of autophagosomes and cytoplasmic vacuolization decreased. The phosphorylation levels of PI3K, Akt, and mTOR were significantly increased(P<0.01). In the 3-MA group, autophagy was inhibited through the activation of the PI3K/Akt/mTOR signaling pathway, resulting in improved cardiac function, reduced myocardial fibrosis, and no significant cytoplasmic vacuolization. The findings suggest that Shenfu Injection can activate the PI3K/Akt/mTOR signaling pathway and inhibit autophagy, thereby improving cardiac function.


Subject(s)
Rats , Animals , Proto-Oncogene Proteins c-akt/metabolism , Phosphatidylinositol 3-Kinases/metabolism , Rats, Sprague-Dawley , TOR Serine-Threonine Kinases/metabolism , Heart Failure/drug therapy , Autophagy , Fibrosis
17.
China Journal of Chinese Materia Medica ; (24): 5304-5314, 2023.
Article in Chinese | WPRIM | ID: wpr-1008728

ABSTRACT

This study aims to observe the effects of diosgenin on the expression of mammalian target of rapamycin(mTOR), sterol regulatory element-binding protein-1c(SREBP-1c), heat shock protein 60(HSP60), medium-chain acyl-CoA dehydrogenase(MCAD), and short-chain acyl-CoA dehydrogenase(SCAD) in the liver tissue of the rat model of non-alcoholic fatty liver disease(NAFLD) and explore the mechanism of diosgenin in alleviating NAFLD. Forty male SD rats were randomized into five groups: a control group, a model group, low-(150 mg·kg~(-1)·d~(-1)) and high-dose(300 mg·kg~(-1)·d~(-1)) diosgenin groups, and a simvastatin(4 mg·kg~(-1)·d~(-1)) group. The rats in the control group were fed with a normal diet, while those in the other four groups were fed with a high-fat diet. After feeding for 8 weeks, the body weight of rats in the high-fat diet groups increased significantly. After that, the rats were administrated with the corresponding dose of diosgenin or simvastatin by gavage every day for 8 weeks. The levels of triglyceride(TG), total cholesterol(TC), alanine transaminase(ALT), and aspartate transaminase(AST) in the serum were determined by the biochemical method. The levels of TG and TC in the liver were measured by the enzyme method. Oil-red O staining was employed to detect the lipid accumulation, and hematoxylin-eosin(HE) staining to detect the pathological changes in the liver tissue. The mRNA and protein levels of mTOR, SREBP-1c, HSP60, MCAD, and SCAD in the liver tissue of rats were determined by real-time fluorescence quantitative polymerase chain reaction(RT-qPCR) and Western blot, respectively. Compared with the control group, the model group showed increased body weight, food uptake, liver index, TG, TC, ALT, and AST levels in the serum, TG and TC levels in the liver, lipid deposition in the liver, obvious hepatic steatosis, up-regulated mRNA and protein expression levels of mTOR and SREBP-1c, and down-regulated mRNA and protein expression levels of HSP60, MCAD, and SCAD. Compared with the model group, the rats in each treatment group showed obviously decreased body weight, food uptake, liver index, TG, TC, ALT, and AST levels in the serum, TG and TC levels in the liver, lessened lipid deposition in the liver, ameliorated hepatic steatosis, down-regulated mRNA and protein le-vels of mTOR and SREBP-1c, and up-regulated mRNA and protein levels of HSP60, MCAD, and SCAD. The high-dose diosgenin outperformed the low-dose diosgenin and simvastatin. Diosgenin may prevent and treat NAFLD by inhibiting the expression of mTOR and SREBP-1c and promoting the expression of HSP60, MCAD, and SCAD to reduce lipid synthesis, improving mitochondrial function, and promoting fatty acid β oxidation in the liver.


Subject(s)
Rats , Male , Animals , Non-alcoholic Fatty Liver Disease/genetics , Sterol Regulatory Element Binding Protein 1/metabolism , Diet, High-Fat/adverse effects , Diosgenin/metabolism , Chaperonin 60/therapeutic use , Rats, Sprague-Dawley , Liver , Signal Transduction , TOR Serine-Threonine Kinases/metabolism , Triglycerides , RNA, Messenger/metabolism , Simvastatin/therapeutic use , Body Weight , Lipid Metabolism , Mammals/metabolism
18.
China Journal of Chinese Materia Medica ; (24): 5271-5277, 2023.
Article in Chinese | WPRIM | ID: wpr-1008724

ABSTRACT

This study explored the protective effect of astragaloside Ⅳ(AS-Ⅳ) on oxygen-glucose deprivation(OGD)-induced autophagic injury in PC12 cells and its underlying mechanism. An OGD-induced autophagic injury model in vitro was established in PC12 cells. The cells were divided into a normal group, an OGD group, low-, medium-, and high-dose AS-Ⅳ groups, and a positive drug dexmedetomidine(DEX) group. Cell viability was measured using the MTT assay. Transmission electron microscopy was used to observe autophagosomes and autolysosomes, and the MDC staining method was used to assess the fluorescence intensity of autophagosomes. Western blot was conducted to determine the relative expression levels of functional proteins LC3-Ⅱ/LC3-Ⅰ, Beclin1, p-Akt/Akt, p-mTOR/mTOR, and HIF-1α. Compared with the normal group, the OGD group exhibited a significant decrease in cell viability(P<0.01), an increase in autophagosomes(P<0.01), enhanced fluorescence intensity of autophagosomes(P<0.01), up-regulated Beclin1, LC3-Ⅱ/LC3-Ⅰ, and HIF-1α(P<0.05 or P<0.01), and down-regulated p-Akt/Akt and p-mTOR/mTOR(P<0.05 or P<0.01). Compared with the OGD group, the low-and medium-dose AS-Ⅳ groups and the DEX group showed a significant increase in cell viability(P<0.01), decreased autophagosomes(P<0.01), weakened fluorescence intensity of autophagosomes(P<0.01), down-regulated Beclin1, LC3-Ⅱ/LC3-Ⅰ, and HIF-1α(P<0.05 or P<0.01), and up-regulated p-Akt/Akt and p-mTOR/mTOR(P<0.01). AS-Ⅳ at low and medium doses exerted a protective effect against OGD-induced autophagic injury in PC12 cells by activating the Akt/mTOR pathway, subsequently influencing HIF-1α. The high-dose AS-Ⅳ group did not show a statistically significant difference compared with the OGD group. This study provides a certain target reference for the prevention and treatment of OGD-induced cellular autophagic injury by AS-Ⅳ and accumulates laboratory data for the secondary development of Astragali Radix and AS-Ⅳ.


Subject(s)
Rats , Animals , PC12 Cells , Proto-Oncogene Proteins c-akt/genetics , Glucose/therapeutic use , Oxygen/metabolism , Beclin-1/pharmacology , TOR Serine-Threonine Kinases/metabolism , Autophagy , Apoptosis , Reperfusion Injury/drug therapy
19.
China Journal of Chinese Materia Medica ; (24): 5250-5258, 2023.
Article in Chinese | WPRIM | ID: wpr-1008722

ABSTRACT

To explore the effect and mechanism of Zuogui Pills in promoting neural tissue recovery and functional recovery in mice with ischemic stroke. Male C57BL/6J mice were randomly divided into a sham group, a model group, and low-, medium, and high-dose Zuogui Pills groups(3.5, 7, and 14 g·kg~(-1)), with 15 mice in each group. The ischemic stroke model was established using photochemical embolization. Stiker remove and irregular ladder walking behavioral tests were conducted before modeling and on days 7, 14, 21, and 28 after medication. Triphenyl tetrazolium chloride(TTC) staining was performed on day 3 after modeling, and T2-weighted imaging(T2WI) and diffusion-weighted imaging(DWI) were performed on day 28 after medication to evaluate the extent of brain injury. Hematoxylin-eosin(HE) staining was performed to observe the histology of the cerebral cortex. Axonal marker proteins myelin basic protein(MBP), growth-associated protein 43(GAP43), mammalian target of rapamycin(mTOR), and its downstream phosphorylated s6 ribosomal protein(p-S6), as well as mechanism-related proteins osteopontin(OPN) and insulin-like growth factor 1(IGF-1), were detected using immunofluorescence and Western blot. Zuogui Pills had a certain restorative effect on the neural function impairment caused by ischemic stroke in mice. TTC staining showed white infarct foci in the sensory-motor cortex area, and T2WI imaging revealed cystic necrosis in the sensory-motor cortex area. The Zuogui Pills groups showed less brain tissue damage, fewer scars, and more capillaries. The number of neuronal axons in those groups was higher than that in the model group, and neuronal activity was stronger. The expression of GAP43, OPN, IGF-1, and mTOR proteins in the Zuogui Pills groups was higher than that in the model group. In summary, Zuogui Pills can promote the recovery of neural function and axonal growth in mice with ischemic stroke, and its mechanism may be related to the activation of the OPN/IGF-1/mTOR signaling pathway.


Subject(s)
Mice , Animals , Male , Ischemic Stroke , Recovery of Function/physiology , Insulin-Like Growth Factor I/pharmacology , Mice, Inbred C57BL , TOR Serine-Threonine Kinases/metabolism , Stroke/drug therapy , Brain Ischemia/drug therapy , Mammals/metabolism
20.
China Journal of Chinese Materia Medica ; (24): 4475-4482, 2023.
Article in Chinese | WPRIM | ID: wpr-1008702

ABSTRACT

This study investigated the effect and mechanism of morin in inducing autophagy and apoptosis in hepatocellular carcinoma cells through the protein kinase B(Akt)/mammalian target of rapamycin(mTOR)/signal transducer and activator of transcription protein 3(STAT3) pathway. Human hepatocellular carcinoma SK-HEP-1 cells were stimulated with different concentrations of morin(0, 50, 100, 125, 200, and 250 μmol·L~(-1)). The effect of morin on the viability of SK-HEP-1 cells was detected by Cell Counting Kit-8(CCK-8). The effect of morin on the proliferation and apoptosis of SK-HEP-1 cells was investigated using colony formation assay, flow cytometry, and BeyoClick~(TM) EdU-488 with different concentrations of morin(0, 125, and 250 μmol·L~(-1)). The changes in the autophagy level of cells treated with morin were examined by transmission electron microscopy and autophagy inhibitors. The impact of morin on the expression levels of proteins related to the Akt/mTOR/STAT3 pathway was verified by Western blot. Compared with the control group, the morin groups showed decreased viability of SK-HEP-1 cells in a time-and concentration-dependent manner, increased number of apoptotic cells, up-regulated expression level of apoptosis marker PARP, up-regulated phosphorylation level of apoptosis-regulating protein H2AX, decreased number of positive cells and the colony formation rate, an upward trend of expression levels of autophagy-related proteins LC3-Ⅱ, Atg5, and Atg7, and decreased phosphorylation levels of Akt, mTOR, and STAT3. These results suggest that morin can promote apoptosis, inhibit proliferation, and induce autophagy in hepatocellular carcinoma cells, and its mechanism of action may be related to the Akt/mTOR/STAT3 pathway.


Subject(s)
Humans , Proto-Oncogene Proteins c-akt/metabolism , Carcinoma, Hepatocellular/pathology , Liver Neoplasms/pathology , TOR Serine-Threonine Kinases/metabolism , Apoptosis , Autophagy , Cell Proliferation , Cell Line, Tumor , STAT3 Transcription Factor/metabolism
SELECTION OF CITATIONS
SEARCH DETAIL