Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 20 de 1.331
Filter
1.
Frontiers of Medicine ; (4): 56-82, 2022.
Article in English | WPRIM | ID: wpr-929195

ABSTRACT

Contributing to organ formation and tissue regeneration, extracellular matrix (ECM) constituents provide tissue with three-dimensional (3D) structural integrity and cellular-function regulation. Containing the crucial traits of the cellular microenvironment, ECM substitutes mediate cell-matrix interactions to prompt stem-cell proliferation and differentiation for 3D organoid construction in vitro or tissue regeneration in vivo. However, these ECMs are often applied generically and have yet to be extensively developed for specific cell types in 3D cultures. Cultured cells also produce rich ECM, particularly stromal cells. Cellular ECM improves 3D culture development in vitro and tissue remodeling during wound healing after implantation into the host as well. Gaining better insight into ECM derived from either tissue or cells that regulate 3D tissue reconstruction or organ regeneration helps us to select, produce, and implant the most suitable ECM and thus promote 3D organoid culture and tissue remodeling for in vivo regeneration. Overall, the decellularization methodologies and tissue/cell-derived ECM as scaffolds or cellular-growth supplements used in cell propagation and differentiation for 3D tissue culture in vitro are discussed. Moreover, current preclinical applications by which ECM components modulate the wound-healing process are reviewed.


Subject(s)
Cell Differentiation , Cell Proliferation , Decellularized Extracellular Matrix , Extracellular Matrix/metabolism , Humans , Mesenchymal Stem Cells , Tissue Engineering/methods , Tissue Scaffolds/chemistry
2.
Article in English | WPRIM | ID: wpr-929132

ABSTRACT

Distraction osteogenesis (DO) is widely used for bone tissue engineering technology. Immune regulations play important roles in the process of DO like other bone regeneration mechanisms. Compared with others, the immune regulation processes of DO have their distinct features. In this review, we summarized the immune-related events including changes in and effects of immune cells, immune-related cytokines, and signaling pathways at different periods in the process of DO. We aim to elucidated our understanding and unknowns about the immunomodulatory role of DO. The goal of this is to use the known knowledge to further modify existing methods of DO, and to develop novel DO strategies in our unknown areas through more detailed studies of the work we have done.


Subject(s)
Bone Regeneration/physiology , Bone and Bones , Osteogenesis/physiology , Osteogenesis, Distraction/methods , Tissue Engineering
3.
Article in English | WPRIM | ID: wpr-929039

ABSTRACT

Carbon nanotube (CNT) composite materials are very attractive for use in neural tissue engineering and biosensor coatings. CNT scaffolds are excellent mimics of extracellular matrix due to their hydrophilicity, viscosity, and biocompatibility. CNTs can also impart conductivity to other insulating materials, improve mechanical stability, guide neuronal cell behavior, and trigger axon regeneration. The performance of chitosan (CS)/polyethylene glycol (PEG) composite scaffolds could be optimized by introducing multi-walled CNTs (MWCNTs). CS/PEG/CNT composite scaffolds with CNT content of 1%, 3%, and 5% (1%=0.01 g/mL) were prepared by freeze-drying. Their physical and chemical properties and biocompatibility were evaluated. Scanning electron microscopy (SEM) showed that the composite scaffolds had a highly connected porous structure. Transmission electron microscope (TEM) and Raman spectroscopy proved that the CNTs were well dispersed in the CS/PEG matrix and combined with the CS/PEG nanofiber bundles. MWCNTs enhanced the elastic modulus of the scaffold. The porosity of the scaffolds ranged from 83% to 96%. They reached a stable water swelling state within 24 h, and swelling decreased with increasing MWCNT concentration. The electrical conductivity and cell adhesion rate of the scaffolds increased with increasing MWCNT content. Immunofluorescence showed that rat pheochromocytoma (PC12) cells grown in the scaffolds had characteristics similar to nerve cells. We measured changes in the expression of nerve cell markers by quantitative real-time polymerase chain reaction (qRT-PCR), and found that PC12 cells cultured in the scaffolds expressed growth-associated protein 43 (GAP43), nerve growth factor receptor (NGFR), and class III β‍-tubulin (TUBB3) proteins. Preliminary research showed that the prepared CS/PEG/CNT scaffold has good biocompatibility and can be further applied to neural tissue engineering research.


Subject(s)
Animals , Axons , Biocompatible Materials/chemistry , Chitosan/chemistry , Nanotubes, Carbon/chemistry , Nerve Regeneration , Polyethylene Glycols , Porosity , Rats , Tissue Engineering/methods , Tissue Scaffolds/chemistry
4.
Article in English | WPRIM | ID: wpr-928654

ABSTRACT

Magnetic nanoparticles (MNP) have been widely used as biomaterials due to their unique magnetic responsiveness and biocompatibility, which also can promote osteogenic differentiation through their inherent micro-magnetic field. The MNP composite scaffold retains its superparamagnetism, which has good physical, mechanical and biological properties with significant osteogenic effects and . Magnetic field has been proved to promote bone tissue repair by affecting cell metabolic behavior. MNP composite scaffolds under magnetic field can synergically promote bone tissue repair and regeneration, which has great application potential in the field of bone tissue engineering. This article summarizes the performance of magnetic composite scaffold, the research progress on the effect of MNP composite scaffold with magnetic fields on osteogenesis, to provide reference for further research and clinical application.


Subject(s)
Cell Differentiation , Magnetite Nanoparticles , Osteogenesis , Tissue Engineering , Tissue Scaffolds
5.
Chinese Journal of Traumatology ; (6): 132-137, 2022.
Article in English | WPRIM | ID: wpr-928489

ABSTRACT

The repair of bone defects, especially for the large segment of bone defects, has always been an urgent problem in orthopedic clinic and attracted researchers' attention. Nowadays, the application of tissue engineering bone in the repair of bone defects has become the research hotspot. With the rapid development of tissue engineering, the novel and functional scaffold materials for bone repair have emerged. In this review, we have summarized the multi-functional roles of osteoclasts in bone remodeling. The development of matrix-based tissue engineering bone has laid a theoretical foundation for further investigation about the novel bone regeneration materials which could perform high bioactivity. From the point of view on preserving pre-osteoclasts and targeting mature osteoclasts, this review introduced the novel matrix-based tissue engineering bone based on osteoclasts in the field of bone tissue engineering, which provides a potential direction for the development of novel scaffold materials for the treatment of bone defects.


Subject(s)
Bone Regeneration , Bone and Bones , Humans , Osteoclasts , Tissue Engineering
6.
Chinese Journal of Biotechnology ; (12): 925-942, 2022.
Article in Chinese | WPRIM | ID: wpr-927755

ABSTRACT

Cartilage has poor self-recovery because of its characteristics of no blood vessels and high extracellular matrix. In clinical treatment, physical therapy or drug therapy is usually used for mild cartilage defects, and surgical treatment is needed for severe ones. In recent years, cartilage tissue engineering technology provides a new way for the treatment of cartilage defects. Compared with the traditional surgical treatment, cartilage tissue engineering technology has the advantages of small wound and good recovery. The application of microcarrier technology in the design of tissue engineering scaffolds further expands the function of scaffolds and promotes cartilage regeneration. This review summarized the main preparation methods and development of microcarrier technology in recent years. Subsequently, the properties and specific application scenarios of microcarriers with different materials and functions were introduced according to the materials and functions of microcarriers used in cartilage repair. Based on our research on osteochondral integrated layered scaffolds, we proposed an idea of optimizing the performance of layered scaffolds through microcarriers, which is expected to prepare bionic scaffolds that are more suitable for the structural characteristics of natural cartilage.


Subject(s)
Cartilage , Extracellular Matrix/chemistry , Technology , Tissue Engineering/methods , Tissue Scaffolds/chemistry
7.
Rev. bras. oftalmol ; 80(2): 146-150, Mar.-Apr. 2021. graf
Article in English | LILACS | ID: biblio-1280111

ABSTRACT

ABSTRACT We propose a novel surgical technique in cases of aggressive recurrent pterygium non-subsidiary of treatment with conjunctival autografts or antimetabolites. Two presented cases were treated with surgical excision and a sutured plasma rich in growth factors membrane (mPRGF) followed by rich in growth factors (PRGF) eye drops treatment. After surgery, dexamethasone, tobramycin and PRGF eye drops were prescribed for 6 weeks. After a 12-month and 3-year post-surgical follow-up respectively, treated eyes with mPRGF did not present relapse, and visual acuity improved in both cases. No ocular complications, pain, eye discomfort nor other symptoms were observed. The combined use of PRGF eye drops and mPRGF seems an effective and safe therapy for recurrent pterygium.


RESUMO Nós propomos uma nova técnica cirúrgica em casos de pterígio agressivo recorrente não subsidiário de tratamento com autoenxertos conjuntivais ou antimetabólitos. Dois casos foram tratados com excisão cirúrgica e um plasma suturado rico em membrana de fatores de crescimento (mPRGF), seguido de tratamento com colírios ricos em fatores de crescimento (PRGF). Após a cirurgia, foram prescritos colírios de dexametasona, tobramicina e PRGF por 6 semanas. Após 12 meses e 3 anos de acompanhamento pós-cirúrgico respectivamente, os olhos tratados com mPRGF não apresentaram recidiva e a acuidade visual melhorou nos dois casos. Não foram observadas complicações oculares, dor, desconforto ocular ou outros sintomas. O uso combinado de colírios de PRGF e mPRGF parece uma terapia eficaz e segura para o pterígio recorrente.


Subject(s)
Humans , Male , Middle Aged , Aged , Pterygium/surgery , Platelet-Rich Plasma , Platelet-Rich Fibrin , Ophthalmic Solutions , Recurrence , Reoperation , Ophthalmologic Surgical Procedures/methods , Biological Dressings , Fibrin/therapeutic use , Platelet Activation , Tissue Transplantation/methods , Tissue Engineering
8.
Article in English | WPRIM | ID: wpr-879964

ABSTRACT

Temporomandibular joint osteoarthritis (TMJOA) is mainly manifested as perforation of temporomandibular joint disc (TMJD) and destruction of condylar osteochondral complex (COCC). In recent years, tissue engineering technology has become one of the effective strategies in repairing this damage. With the development of scaffold material technology, composite scaffolds have become an important means to optimize the performance of scaffolds with the combined advantages of natural materials and synthetic materials. The gelling method with the minimally invasive concept can greatly solve the problems of surgical trauma and material anastomosis, which is beneficial to the clinical transformation of temporomandibular joint tissue engineering. Extracellular matrix scaffolds technology can solve the problem of scaffold source and maximize the simulation of the extracellular environment, which provides an important means for the transformation of temporo joint tissue engineering to animal level. Due to the limitation of the source and amplification of costal chondrocytes, the use of mesenchymal stem cells from different sources has been widely used for temporomandibular joint tissue engineering. The fibrochondral stem cells isolated from surface layer of articular cartilage may provide one more suitable cell source. Transforming growth factor β superfamily, due to its osteochondrogenesis activity has been widely used in tissue engineering, and platelet-rich derivative as a convenient preparation of compound biological factor, gradually get used in temporomandibular joint tissue engineering. With the deepening of research on extracellular microenvironment and mechanical stimulation, mesenchymal stem cells, exosomes and stress stimulation are increasingly being used to regulate the extracellular microenvironment. In the future, the combination of complex bioactive factors and certain stress stimulation may become a trend in the temporomandibular joint tissue engineering research. In this article, the progress on tissue engineering in repairing COCC and TMJD, especially in scaffold materials, seed cells and bioactive factors, are reviewed, so as to provide information for future research design and clinical intervention.


Subject(s)
Animals , Mesenchymal Stem Cells , Temporomandibular Joint/surgery , Temporomandibular Joint Disc/surgery , Tissue Engineering , Tissue Scaffolds
9.
Article in English | WPRIM | ID: wpr-888699

ABSTRACT

Tissue engineering approaches have emerged recently to circumvent many limitations associated with current clinical practices. This elegant approach utilizes a natural/synthetic biomaterial with optimized physiomechanical properties to serve as a vehicle for delivery of exogenous stem cells and bioactive factors or induce local recruitment of endogenous cells for in situ tissue regeneration. Inspired by the natural microenvironment, biomaterials could act as a biomimetic three-dimensional (3D) structure to help the cells establish their natural interactions. Such a strategy should not only employ a biocompatible biomaterial to induce new tissue formation but also benefit from an easily accessible and abundant source of stem cells with potent tissue regenerative potential. The human teeth and oral cavity harbor various populations of mesenchymal stem cells (MSCs) with self-renewing and multilineage differentiation capabilities. In the current review article, we seek to highlight recent progress and future opportunities in dental MSC-mediated therapeutic strategies for tissue regeneration using two possible approaches, cell transplantation and cell homing. Altogether, this paper develops a general picture of current innovative strategies to employ dental-derived MSCs combined with biomaterials and bioactive factors for regenerating the lost or defective tissues and offers information regarding the available scientific data and possible applications.


Subject(s)
Biocompatible Materials , Cell Differentiation , Humans , Mesenchymal Stem Cell Transplantation , Mesenchymal Stem Cells , Tissue Engineering
10.
Acta cir. bras ; 36(10): e361001, 2021. graf
Article in English | LILACS, VETINDEX | ID: biblio-1345021

ABSTRACT

ABSTRACT Purpose: To evaluate methods that improve adipose-derived stem cells (ASCs) population in decellularized biological venous scaffold for tissue engineering in blood vessels, a model in rabbits. Methods: The ASC was expanded until the third passage. Inferior vena cava (IVC) was submitted to the decellularization process using 1% sodium dodecyl sulfate (SDS) or 2% sodium deoxycholate (SD) to compose 12 study groups (G): pure SD or SDS, exposed or not to 1% TritonX-100 (TX-100) and exposed or not to poly-l'lysine and laminin (PL). Scaffolds were covered with 1 × 105 or 1 × 106 ASCs diluted in 10 μL Puramatrix™. The histological analysis was done by cell counting in hematoxylin and eosin (HE) and nuclei count in immunofluorescence (IF) with 4',6-Diamidine-2'-phenylindole dihydrochloride (DAPI). Results: The study of groups in HE and IF showed similar results. For both analyses,IVC-SD-1 × 106 ASC and IVC-SD-PL-1 × 106 ASC provided the best results. The IF technique showed better sensitivity than HE, with a weak agreement between them. Conclusions: Decellularizing agent and the number of ASC influence scaffolds cellularization response and the best protocols as those ones using SD with or without the addition of PL.


Subject(s)
Animals , Mesenchymal Stem Cells , Rabbits , Sodium Dodecyl Sulfate , Adipose Tissue , Tissue Engineering , Tissue Scaffolds
11.
Acta cir. bras ; 36(6): e360601, 2021. graf
Article in English | LILACS, VETINDEX | ID: biblio-1278116

ABSTRACT

ABSTRACT Purpose To develop a segmental tibial bone defect model for tissue engineering studies in veterinary orthopedics using single locking compression plate (LCP) fixation and cast immobilization. Methods A 3-cm bone defect was created in the right tibia of 18 adult Suffolk sheep. A 10-hole, 4.5-mm LCP was applied to the dorsomedial aspect of the bone. Four locking screws were inserted into the proximal and three into the distal bone fragment. Operated limbs were immobilized with casts. Animals were submitted to stall rest, but were allowed to bear weight on the operated limb. During the recovery period, animals were checked daily for physiological parameters, behavior and lameness. Follow-up radiographs were taken monthly. Results Surgical procedures and postoperative recovery were uneventful. Animals adapted quickly to casts and were able to bear weight on the operated limb with no signs of discomfort or distress. No clinical or radiographic complications were detected over a 90-day follow-up period. Conclusions Surgical creation of tibial segmental bone defects followed by fixation with single LCP and cast immobilization was deemed a feasible and appropriate model for veterinary orthopedic research in tissue engineering.


Subject(s)
Animals , Fractures, Bone , Fracture Fixation, Internal , Bone Plates , Bone Screws , Sheep , Tissue Engineering
12.
Article in English | WPRIM | ID: wpr-921882

ABSTRACT

To get an optimal product of orthopaedic implant or regenerative medicine needs to follow trial-and-error analyses to investigate suitable product's material, structure, mechanical properites etc. The whole process from


Subject(s)
Cell Differentiation , Cell Movement , Cell Proliferation , Computer Simulation , Tissue Engineering
13.
Journal of Biomedical Engineering ; (6): 1229-1234, 2021.
Article in Chinese | WPRIM | ID: wpr-921865

ABSTRACT

With the continuous progress of materials science and biology, the significance of biomaterials with dual characteristics of materials science and biology is keeping on increasing. Nowadays, more and more biomaterials are being used in tissue engineering, pharmaceutical engineering and regenerative medicine. In repairing bone defects caused by trauma, tumor invasion, congenital malformation and other factors, a variety of biomaterials have emerged with different characteristics, such as surface charge, surface wettability, surface composition, immune regulation and so on, leading to significant differences in repair effects. This paper mainly discusses the influence of surface charge of biomaterials on bone formation and the methods of introducing surface charge, aiming to promote bone formation by changing the charge distribution on the surface of the biomaterials to serve the clinical treatment better.


Subject(s)
Biocompatible Materials , Osteogenesis , Regenerative Medicine , Tissue Engineering
14.
Journal of Biomedical Engineering ; (6): 1028-1034, 2021.
Article in Chinese | WPRIM | ID: wpr-921842

ABSTRACT

Parathyroid hormone (PTH) exerts multiple effects such as regulating bone remodeling, promoting angiogenesis, etc., and it is an active factor with great application potential for bone repair. In recent years, with the development of scaffold material loading strategies and parathyroid hormone-related peptides (PTHrPs), in situ loading of PTH or PTHrPs on scaffold materials to promote bone defect healing gradually becomes possible. Based on the current status and challenges of intermittent PTH (iPTH) for bone tissue engineering, the review summarizes the in-situ application strategies of PTH and the construction of PTHrPs as well as current problems and further directions in this field, with a view to propel the clinical application of scaffold materials loaded with PTH or PTHrPs


Subject(s)
Bone and Bones , Parathyroid Hormone , Tissue Engineering , Tissue Scaffolds , Wound Healing
15.
Article in Chinese | WPRIM | ID: wpr-921834

ABSTRACT

In order to establish a bone scaffold with good biological properties, two kinds of new gradient triply periodic minimal surfaces (TPMS) scaffolds, i.e., two-way linear gradient G scaffolds (L-G) and D, G fusion scaffold (N-G) were designed based on the gyroid (G) and diamond (D)-type TPMS in this study. The structural mechanical parameters of the two kinds of scaffolds were obtained through the compressive simulation. The flow property parameters were also obtained through the computational fluid dynamics (CFD) simulation in this study, and the permeability of the two kinds of scaffolds were calculated by Darcy's law. The tissue differentiation areas of the two kinds of scaffolds were calculated based on the tissue differentiation theory. The results show that L-G scaffold has a better mechanical property than the N-G scaffold. However, N-G scaffold is better than the L-G scaffold in biological properties such as permeability and cartilage differentiation areas. The modeling processes of L-G and N-G scaffolds provide a new insight for the design of bone scaffold. The simulation in this study can also give reference for the prediction of osseointegration after the implantation of scaffold in the human body.


Subject(s)
Bone and Bones , Humans , Permeability , Porosity , Tissue Engineering , Tissue Scaffolds
16.
Article in Chinese | WPRIM | ID: wpr-921829

ABSTRACT

At present, acellular matrix is an effective replacement material for the treatment of skin damage, but there are few systematic evaluation studies on its performance. The experimental group of this study used two decellularization methods to prepare the matrix: one was the acellular matrix which sterilized with peracetic acid first (0.2% PAA/4% ethanol solution) and then treated with hypertonic saline (group A), the other was 0.05% trypsin/EDTA decellularization after γ irradiation (group B); and the control group was soaked in PBS (Group C). Then physical properties and chemical composition of the three groups were detected. Hematoxylin eosin (HE) staining showed that the acellular effect of group B was good. The porosity of group A and B were both above 84.9%. In group A, the compressive modulus of elasticity was (9.94 ± 3.81) MPa, and the compressive modulus of elasticity was (12.59 ± 5.50) MPa in group B. There was no significant difference between group A or B and group C. The total content of collagen in acellular matrix of group A and B was significantly lower than that of group C (1. 662 ± 0.229) mg/g, but there was no significant difference in the ratio of collagen Ⅰ/Ⅲ between group B and group C. Scanning electron microscopy (SEM) and atomic force microscopy (AFM) showed that there was no significant difference in microstructure. Qualitative detection of fibronectin and elastin in each group was basically consistent with that in group C. Therefore, acellular matrix of group B had better performance as scaffold material. The experimental results show that the acellular matrix prepared by γ-ray sterilization and decellularization of 0.05% Trypsin enzyme/EDTA could be used for the construction of tissue-engineered skin. It could also provide reference for the preparation and mounting of heterogeneous dermal acellular matrix. It was also could be used for electrostatic spinning or three-dimensional printed tissue engineered skin scaffold which could provide physical and chemical parameters for it.


Subject(s)
Acellular Dermis , Cells, Cultured , Extracellular Matrix , Porosity , Tissue Engineering , Tissue Scaffolds
17.
Chinese Journal of Biotechnology ; (12): 4024-4035, 2021.
Article in Chinese | WPRIM | ID: wpr-921483

ABSTRACT

Decellularized extracellular matrix (dECM), which contains many proteins and growth factors, can provide three-dimensional scaffolds for cells and regulate cell regeneration. 3D bioprinting can print the combination of dECM and autologous cells layer by layer to construct the tissue structure of carrier cells. In this paper, the preparation methods of tissue and organ dECM bioink from different sources, including decellularization, crosslinking, and the application of dECM bioink in bioprinting are reviewed, with future applications prospected.


Subject(s)
Bioprinting , Extracellular Matrix , Printing, Three-Dimensional , Tissue Engineering , Tissue Scaffolds
18.
Chinese Journal of Biotechnology ; (12): 3475-3486, 2021.
Article in Chinese | WPRIM | ID: wpr-921442

ABSTRACT

A plethora of organic pollutants such as pesticides, polycyclic and halogenated aromatic hydrocarbons, and emerging pollutants, such as flame retardants, is continuously being released into the environment. This poses a huge threat to the society in terms of environmental pollution, agricultural product quality, and general safety. Therefore, effective removal of organic pollutants from the environment has become an important challenge to be addressed. As a consequence of the recent and rapid developments in additive manufacturing, 3D bioprinting technology is playing an important role in the pharmaceutical industry. At the same time, an increasing number of microorganisms suitable for the production of biomaterials with complex structures and functions using 3D bioprinting technology, have been identified. This article briefly discusses the principles, advantages, and disadvantages of different 3D bioprinting technologies for pollutant removal. Furthermore, the feasibility and challenges of developing bioremediation technologies based on 3D bioprinting have also been discussed.


Subject(s)
Biocompatible Materials , Biodegradation, Environmental , Bioprinting , Environmental Pollutants , Technology , Tissue Engineering
19.
Article in English | WPRIM | ID: wpr-921384

ABSTRACT

Framework nucleic acid (FNA) is a set of DNA nanostructures characterized by the framework morphology. It can design rational DNA sequences and follow the principle of complementary base pairing to construct FNA. The recent discovery of FNA constructed by DNA nanotechnology has great application potential in the field of bone regene-ration. It plays a positive role in the osteogenic differentiation of stem cells, bone regeneration, vascular regeneration, neuromodulation, immune regulation, and drug delivery. Here, we reviewed the current study findings on FNA in the field of bone regeneration.


Subject(s)
Bone Regeneration , Nanostructures , Nanotechnology , Nucleic Acids , Osteogenesis , Tissue Engineering
20.
Article in Chinese | WPRIM | ID: wpr-888243

ABSTRACT

Ligaments are dense fibrous connective tissue that maintains joint stability through bone-to-bone connections. Ligament tears that due to sports injury or tissue aging usually require surgical intervention, and transplanting autologous, allogeneic, or artificial ligaments for reconstruction is the gold standard for treating such diseases in spite of many drawbacks. With the development of materialogy and manufacturing technology, engineered ligament tissue based on bioscaffold is expected to become a new substitute, which can lead to tissue regeneration by simulating the structure, composition, and biomechanical properties of natural tissue. This paper reviewed some recently published


Subject(s)
Animals , Bionics , Bone and Bones , Humans , Ligaments , Tissue Engineering , Wound Healing
SELECTION OF CITATIONS
SEARCH DETAIL