Your browser doesn't support javascript.
loading
Montrer: 20 | 50 | 100
Résultats 1 - 20 de 446
Filtre
1.
Article Dans Chinois | WPRIM | ID: wpr-1008753

Résumé

This study investigated the mechanism of Gegen Qinlian Decoction(GQD) in improving glucose metabolism in vitro and in vivo by alleviating endoplasmic reticulum stress(ERS). Molecular docking was used to predict the binding affinity between the main effective plasma components of GQD and ERS-related targets. Liver tissue samples were obtained from normal rats, high-fat-induced diabetic rats, rats treated with metformin, and rats treated with GQD. RNA and protein were extracted. qPCR was used to measure the mRNA expression of ERS marker glucose-regulated protein 78(GRP78), and unfolded protein response(UPR) genes inositol requiring enzyme 1(Ire1), activating transcription factor 6(Atf6), Atf4, C/EBP-homologous protein(Chop), and caspase-12. Western blot was used to detect the protein expression of GRP78, IRE1, protein kinase R-like ER kinase(PERK), ATF6, X-box binding protein 1(XBP1), ATF4, CHOP, caspase-12, caspase-9, and caspase-3. The calcium ion content in liver tissues was determined by the colorimetric assay. The ERS-HepG2 cell model was established in vitro by inducing with tunicamycin for 6 hours, and 2.5%, 5%, and 10% GQD-containing serum were administered for 9 hours. The glucose oxidase method was used to measure extracellular glucose levels, flow cytometry to detect cell apoptosis, glycogen staining to measure cellular glycogen content, and immunofluorescence to detect the expression of GRP78. The intracellular calcium ion content was measured by the colorimetric assay. Whereas Western blot was used to detect GRP78 and ERS-induced IRE1, PERK, ATF6, and eukaryotic translation initiation factor 2α(eIF2α) phosphorylation. Additionally, the phosphorylation levels of insulin receptor substrate 1(IRS1), phosphatidylinositol 3-kinase regulatory subunit p85(PI3Kp85), and protein kinase B(Akt), which were involved in the insulin signaling pathway, were also measured. In addition, the phosphorylation levels of c-Jun N-terminal kinases(JNKs), which were involved in both the ERS and insulin signaling pathways, were measured by Western blot. Molecular docking results showed that GRP78, IRE1, PERK, ATF4, and various compounds such as baicalein, berberine, daidzein, jateorhizine, liquiritin, palmatine, puerarin and wogonoside had strong binding affinities, indicating that GQD might interfere with ERS-induced UPR. In vivo results showed that GQD down-regulated the mRNA transcription of Ire1, Atf6, Atf4, Grp78, caspase-12, and Chop in diabetic rats, and down-regulated GRP78, IRE1, PERK, as well as ERS-induced apoptotic factors ATF4 and CHOP, caspase-12, caspase-9, and caspase-3, while up-regulating XBP1 to enhance adaptive UPR. In addition, GQD increased the calcium ion content in liver tissues, which facilitated correct protein folding. In vitro results showed that GQD increased glucose consumption in ERS-induced HepG2 cells without significantly affecting cell viability, increased liver glycogen synthesis, down-regulated ATF6 and p-eIF2α(Ser51), and down-regulated IRE1, PERK, and GRP78, as well as p-IRS1(Ser312) and p-JNKs(Thr183/Tyr185), while up-regulating p-PI3Kp85(Tyr607) and p-Akt(Ser473). These findings suggested that GQD alleviates excessive ERS in the liver, reduces insulin resistance, and improves hepatic glucose metabolism in vivo and in vitro.


Sujets)
Rats , Animaux , Protéines proto-oncogènes c-akt , Chaperonne BiP du réticulum endoplasmique , Caspase-3 , Caspase-9 , Diabète expérimental , Caspase-12 , Calcium/pharmacologie , Simulation de docking moléculaire , Stress du réticulum endoplasmique , Protein-Serine-Threonine Kinases/génétique , Foie , Apoptose , Insuline , Glucose , Glycogène/pharmacologie , ARN messager
2.
Article Dans Chinois | WPRIM | ID: wpr-1008676

Résumé

This study aims to investigate the mechanism of Astragali Radix-Curcumae Rhizoma(HQEZ) in the treatment of gastric cancer based on network pharmacology. Further, the SGC7901 cell model of gastric cancer was employed to validate the efficacy and key targets of the herb pair. Firstly, the CCK-8 assay was employed to evaluate the direct effect of HQEZ on the proliferation of gastric cancer SGC7901 cells. Then, network pharmacology methods were employed to investigate the active ingredients, key targets, and key signaling pathways involved in the treatment of gastric cancer with HQEZ. The results showed that HQEZ contained 18 potential active ingredients, such as quercetin, naringenin, and curcumin. The results of gene ontology(GO) functional annotation and Kyoto Encyclopedia of Genes and Genomes(KEGG) pathway enrichment suggested that the main targets of HQEZ in treating gastric cancer were involved in the regulation of protein serine/threonine kinase activity, activation of mitogen-activated protein kinase(MAPK) activity, cysteine-type endopeptidase activity, and negative regulation of protein serine/threonine kinase activity. The hypoxia-inducible factor-1(HIF-1) signaling pathway, ATP-binding cassette(ABC) transporters, cytochrome P450-mediated metabolism of xenobiotics, p53 signaling pathway, and cell apoptosis were key signaling pathways of HQEZ in treating gastric cancer. The cell experiments demonstrated that HQEZ significantly downregulated the expression of ATP-binding cassette subfamily B member 1(ABCB1), epidermal growth factor receptor(EGFR), phosphorylated serine/threonine kinase(p-AKT), hypoxia inducible factor 1 subunit alpha(HIF1A), B-cell lymphoma 2(BCL2), breast cancer susceptibility protein 1(BRCA1), DNA polymerase theta(POLH), ribonucleotide reductase M1(RRM1), and excision repair cross-complementation group 1(ERCC1), and upregulated the expression of tumor protein P53(TP53) and cysteinyl aspartate-specific proteinase(CAPS3). Finally, a multivariate COX regression model was adopted to study the relationship between gene expression and clinical information data of gastric cancer patients in the TCGA database, which demonstrated that the key targets of HQEZ were associated with the poor prognosis in gastric cancer patients. Further feature selection using the LASSO algorithm showed that EGFR, HIF1A, TP53, POLH, RRM1, and ERCC1 were closely associated with the survival of gastric can-cer patients. In conclusion, HQEZ regulates the expression of genes involved in DNA repair, survival, and apoptosis in gastric cancer cells via multiple targets and pathways, assisting the treatment of gastric cancer.


Sujets)
Humains , Tumeurs de l'estomac/génétique , Protéine p53 suppresseur de tumeur , Pharmacologie des réseaux , Récepteurs ErbB , Protein-Serine-Threonine Kinases , Sérine , Adénosine triphosphate , Simulation de docking moléculaire , Médicaments issus de plantes chinoises/pharmacologie
3.
Chinese Journal of Biotechnology ; (12): 1525-1547, 2023.
Article Dans Chinois | WPRIM | ID: wpr-981152

Résumé

Cell cycle plays a crucial role in cell development. Cell cycle progression is mainly regulated by cyclin dependent kinase (CDK), cyclin and endogenous CDK inhibitor (CKI). Among these, CDK is the main cell cycle regulator, binding to cyclin to form the cyclin-CDK complex, which phosphorylates hundreds of substrates and regulates interphase and mitotic progression. Abnormal activity of various cell cycle proteins can cause uncontrolled proliferation of cancer cells, which leads to cancer development. Therefore, understanding the changes in CDK activity, cyclin-CDK assembly and the role of CDK inhibitors will help to understand the underlying regulatory processes in cell cycle progression, as well as provide a basis for the treatment of cancer and disease and the development of CDK inhibitor-based therapeutic agents. This review focuses on the key events of CDK activation or inactivation, and summarizes the regulatory processes of cyclin-CDK at specific times and locations, as well as the progress of research on relevant CDK inhibitor therapeutics in cancer and disease. The review concludes with a brief description of the current challenges of the cell cycle process, with the aim to provide scientific references and new ideas for further research on cell cycle process.


Sujets)
Kinases cyclines-dépendantes/métabolisme , Cyclines/métabolisme , Protein-Serine-Threonine Kinases , Protéines du cycle cellulaire/métabolisme , Cycle cellulaire/physiologie , Kinase-2 cycline-dépendante
4.
Acta Physiologica Sinica ; (6): 451-464, 2023.
Article Dans Chinois | WPRIM | ID: wpr-981020

Résumé

Serum and glucocorticoid-regulated kinase 1 (SGK1) plays an important role in the physiological processes of hormone release, neuronal excitation and cell proliferation. SGK1 also participates in the pathophysiological processes of inflammation and apoptosis in the central nervous system (CNS). Increasing evidence demonstrates that SGK1 may serve as a target of the intervention of neurodegenerative diseases. In this article, we summarize the recent progress on the role and molecular mechanisms of SGK1 in the regulation of the function of the CNS. We also discuss the potential of newly discovered SGK1 inhibitors in the treatment of CNS diseases.


Sujets)
Humains , Prolifération cellulaire , Maladies du système nerveux central/traitement médicamenteux , Inflammation , Protein-Serine-Threonine Kinases/physiologie
5.
Chinese Journal of Oncology ; (12): 594-604, 2023.
Article Dans Chinois | WPRIM | ID: wpr-984755

Résumé

Objective: To explore the mechanism of Doublecortin-like kinase 1 (DCLK1) in promoting cell migration, invasion and proliferation in pancreatic cancer. Methods: The correlation between DCLK1 and Hippo pathway was analyzed using TCGA and GTEx databases and confirmed by fluorescence staining of pancreatic cancer tissue microarrays. At the cellular level, immunofluorescence staining of cell crawls and western blot assays were performed to clarify whether DCLK1 regulates yes associated protein1 (YAP1), a downstream effector of the Hippo pathway. Reverse transcription-quantitative real-time polymerase chain reaction (RT-qPCR) was used to analyze the expressions of YAP1 binding transcription factor TEA-DNA binding proteins (TEAD) and downstream malignant behavior-promoting molecules CYR61, EDN1, AREG, and CTGF. Transwell test of the DCLK1-overexpressing cells treated with the Hippo pathway inhibitor Verteporfin was used to examine whether the malignant behavior-promoting ability was blocked. Analysis of changes in the proliferation index of experimental cells used real-time label-free cells. Results: TCGA combined with GTEx data analysis showed that the expressions of DCLK1 and YAP1 molecules in pancreatic cancer tissues were significantly higher than those in adjacent tissues (P<0.05). Moreover, DCLK1was positively correlated with the expressions of many effectors in the Hippo pathway, including LATS1 (r=0.53, P<0.001), LATS2 (r=0.34, P<0.001), MOB1B (r=0.40, P<0.001). In addition, the tissue microarray of pancreatic cancer patients was stained with multicolor fluorescence, indicated that the high expression of DCLK1 in pancreatic cancer patients was accompanied by the up-regulated expression of YAP1. The expression of DCLK1 in pancreatic cancer cell lines was analyzed by the CCLE database. The results showed that the expression of DCLK1 in AsPC-1 and PANC-1 cells was low. Thus, we overexpressed DCLK1 in AsPC-1 and PANC-1 cell lines and found that DCLK1 overexpression in pancreatic cancer cell lines promoted YAP1 expression and accessible to the nucleus. In addition, DCLK1 up-regulated the expression of YAP1 binding transcription factor TEAD and increased the mRNA expression levels of downstream malignant behavior-promoting molecules. Finally, Verteporfin, an inhibitor of the Hippo pathway, could antagonize the cell's malignant behavior-promoting ability mediated by high expression of DCLK1. We found that the number of migrated cells with DCLK1 overexpressing AsPC-1 group was 68.33±7.09, which was significantly higher than 22.00±4.58 of DCLK1 overexpressing cells treated with Verteporfin (P<0.05). Similarly, the migration number of PANC-1 cells overexpressing DCLK1 was 65.66±8.73, which was significantly higher than 37.00±6.00 of the control group and 32.33±9.61 of Hippo pathway inhibitor-treated group (P<0.05). Meanwhile, the number of invasive cells in the DCLK1-overexpressed group was significantly higher than that in the DCLK1 wild-type group cells, while the Verteporfin-treated DCLK1-overexpressed cells showed a significant decrease. In addition, we monitored the cell proliferation index using the real-time cellular analysis (RTCA) assay, and the proliferation index of DCLK1-overexpressed AsPC-1 cells was 0.66±0.04, which was significantly higher than 0.38±0.01 of DCLK1 wild-type AsPC-1 cells (P<0.05) as well as 0.05±0.03 of DCLK1-overexpressed AsPC1 cells treated with Verteporfin (P<0.05). PANC-1 cells showed the same pattern, with a proliferation index of 0.77±0.04 for DCLK1-overexpressed PANC-1 cells, significantly higher than DCLK1-overexpressed PANC1 cells after Verteporfin treatment (0.14±0.05, P<0.05). Conclusion: The expression of DCLK1 is remarkably associated with the Hippo pathway, it promotes the migration, invasion, and proliferation of pancreatic cancer cells by activating the Hippo pathway.


Sujets)
Humains , Kinases de type doublecortine , Voie de signalisation Hippo , Vertéporfine/pharmacologie , Lignée cellulaire tumorale , Protein-Serine-Threonine Kinases/métabolisme , Tumeurs du pancréas/anatomopathologie , Protéines de signalisation YAP , Facteurs de transcription/métabolisme , Prolifération cellulaire/génétique , Régulation de l'expression des gènes tumoraux , Protéines suppresseurs de tumeurs/génétique
6.
Chinese Journal of Lung Cancer ; (12): 310-318, 2023.
Article Dans Chinois | WPRIM | ID: wpr-982161

Résumé

Spindle assembly checkpoint (SAC) is a protective mechanism for cells to undergo accurate mitosis. SAC prevented chromosome segregation when kinetochores were not, or incorrectly attached to microtubules in the anaphase of mitosis, thus avoiding aneuploid chromosomes in daughter cells. Aneuploidy and altered expression of SAC component proteins are common in different cancers, including lung cancer. Therefore, SAC is a potential new target for lung cancer therapy. Five small molecule inhibitors of monopolar spindle 1 (MPS1), an upstream component protein of SAC, have entered clinical trials. This article introduces the biological functions of SAC, summarizes the abnormal expression of SAC component proteins in various cancers and the research progress of MPS1 inhibitors, and expects to provide a reference for the future development of lung cancer therapeutic strategies targeting SAC components.
.


Sujets)
Humains , Protéines du cycle cellulaire/métabolisme , Appareil du fuseau/métabolisme , Protein-Serine-Threonine Kinases/métabolisme , Points de contrôle de la phase M du cycle cellulaire/génétique , Tumeurs du poumon/métabolisme
7.
Article Dans Anglais | WPRIM | ID: wpr-1010319

Résumé

OBJECTIVE@#To explore the mechanism of Radix Scrophulariae (RS) extracts in the treatment of hyperthyroidism rats by regulating proliferation, apoptosis, and autophagy of thyroid cell through the mammalian sterile 20-like kinase 1 (MST1)/Hippo pathway.@*METHODS@#Twenty-four rats were randomly divided into 4 groups according to a random number table: control, model group, RS, and RS+Hippo inhibitor (XMU-MP-1) groups (n=6 per group). Rats were gavaged with levothyroxine sodium tablet suspension (LST, 8 μ g/kg) for 21 days except for the control group. Afterwards, rats in the RS group were gavaged with RS extracts at the dose of 1,350 mg/kg, and rats in the RS+XMU-MP-1 group were gavaged with 1,350 mg/kg RS extracts and 1 mg/kg XMU-MP-1. After 15 days of administration, thyroid gland was taken for gross observation, and histopathological changes were observed by hematoxylin-eosin staining. The structure of Golgi secretory vesicles in thyroid tissues was observed by transmission electron microscopy. The expression of thyrotropin receptor (TSH-R) was observed by immunohistochemistry. Terminal-deoxynucleoitidyl transferase mediated nick end labeling assay was used to detect cell apoptosis in thyroid tissues. Real-time quantity primer chain reaction and Western blot were used to detect the expressions of MST1, p-large tumor suppressor gene 1 (LATS1), p-Yes1 associated transcriptional regulator (YAP), proliferating cell nuclear antigen (PCNA), G1/S-specific cyclin-D1 (Cyclin D1), B-cell lymphoma-2 (Bcl-2), Caspase-3, microtubule-associated proeins light chain 3 II/I (LC3-II/I), and recombinant human autophagy related 5 (ATG5). Thyroxine (T4) level was detected by enzyme-linked immunosorbent assay.@*RESULTS@#The thyroid volume of rats in the model group was significantly increased compared to the normal control group (P<0.01), and pathological changes such as uneven size of follicular epithelial cells, disorderly arrangement, and irregular morphology occurred. The secretion of small vesicles by Golgi apparatus was reduced, and the expressions of receptor protein TSH-R and T4 were significantly increased (P<0.01), while the expressions of MST1, p-LATS1, p-YAP, Caspase-3, LC3-II/I, and ATG5 were significantly decreased (P<0.01). The expressions of Bcl-2, PCNA, and cyclin D1 were significantly increased (P<0.01). Compared with the model group, RS extracts reduced the volume of thyroid gland, improved pathological condition of the thyroid gland, promoted secretion of the secretory vesicles with double-layer membrane structure in thyroid Golgi, significantly inhibited the expression of TSH-R and T4 levels (P<0.01), upregulated MST1, p-LATS1, p-YAP, Caspase-3, LC3-II/I, and ATG5 expressions (P<0.01), and downregulated Bcl-2, PCNA, and Cyclin D1 expressions (P<0.01). XMU-MP-1 inhibited the intervention effects of RS extracts (P<0.01).@*CONCLUSION@#RS extracts could inhibit proliferation and promote apoptosis and autophagy in thyroid tissues through MST1/Hippo pathway for treating hyperthyroidism.


Sujets)
Rats , Humains , Animaux , Voie de signalisation Hippo , Antigène nucléaire de prolifération cellulaire/métabolisme , Cycline D1/pharmacologie , Caspase-3/métabolisme , Protein-Serine-Threonine Kinases/pharmacologie , Apoptose , Hyperthyroïdie/traitement médicamenteux , Protéines proto-oncogènes c-bcl-2/métabolisme , Thyréostimuline/pharmacologie , Mammifères/métabolisme
8.
Article Dans Chinois | WPRIM | ID: wpr-928665

Résumé

OBJECTIVE@#To investigate the effect of monoammonium glycyrrhizinate on the stem cell-like characteristics, oxidative stress and mitochondrial function of acute promyelocytic leukemia cells NB4.@*METHODS@#CCK-8 method was used to detect the viability of acute promyelocytic leukemia cells NB4, and the appropriate dose was screened; Cloning method was used to detect the proliferation rate of NB4 cell; Western blot was used to detect the expression of cell cycle-related protein; flow cytometry was used to detect cell apoptosis and sort NB4 stem cells positive (CD133+); Stem cell markers (Oct4, ABCG2, Dclk1) were detected by RT-PCR; ROS was detected by fluorescence; The kit was used to detect the level of oxidative stress markers (MDA); The flow cytometry was used to detect the change of mitochondrial membrane potential; Western blot was used to detect the expression of mitochondrial damage index-related proteins (Bax/BCL-2).@*RESULTS@#Compared with the control group, if the concentration of MAG was less than 5 μmol/L, the cell NB4 viability showed no significant difference; if the concentration was higher than 5 μmol/L, the inhibitory effect on the growth of cell NB4 increased and showed significant difference (P<0.05), according to the results of CCK-8 experiment, four groups were set based on the concentration of MAG 0 μmol/L, MAG 5 μmol/L, MAG 10 μmol/L, and MAG 20 μmol/L; compared with the control group (MAG 0 μmol/L), the cells in MAG 5 μmol/L group showed no significant difference, while the proliferation rate, cyclin expression, mitochondrial membrane potential, stem cell CD133+ ratio, and marker mRNA level ( Oct4, ABCG2, Dclk1) of NB4 cell were significantly reduced (P<0.05); the apoptosis rate, reactive oxygen species, MDA content and Bax/BCL-2 expression of NB4 cell significantly increased (P<0.05).@*CONCLUSION@#Monoammonium glycyrrhizinate has a significant inhibitory effect on acute promyelocytic leukemia cells NB4, which may be related to the regulation of stem cell-like characteristics, oxidative stress and mitochondrial function.


Sujets)
Humains , Apoptose , Lignée cellulaire tumorale , Kinases de type doublecortine , Protéines et peptides de signalisation intracellulaire/métabolisme , Leucémie aiguë promyélocytaire , Mitochondries , Stress oxydatif , Protein-Serine-Threonine Kinases , Cellules souches
9.
Article Dans Chinois | WPRIM | ID: wpr-927695

Résumé

Sucrose non-fermenting-1-related protein kinase 2 (SnRK2) is a specific Ser/Thr protein kinase in plants. SnRK2 can regulate the expression of downstream genes or transcription factors through phosphorylation of substrates to achieve stress resistance regulation in different tissue parts, and make plants adapt to adverse environment. SnRK2 has a small number of members and a molecular weight of about 40 kDa, and contains a conserved N-terminal kinase domain and a divergent C-terminal regulatory domain, which plays an important role in the expression of enzyme. This review summarized the recent research progresses on the discovery, structure, and classification of SnRK2, and its function in response to various stresses and in regulating growth and development, followed by prospecting the future research direction of SnRK2. This review may provide a reference for genetic improvement of crop stress resistance.


Sujets)
Acide abscissique , Protéines d'Arabidopsis/génétique , Régulation de l'expression des gènes végétaux , Croissance et développement , Plantes/génétique , Protein kinases , Protein-Serine-Threonine Kinases/génétique , Stress physiologique/génétique
10.
Acta Physiologica Sinica ; (6): 110-116, 2022.
Article Dans Chinois | WPRIM | ID: wpr-927586

Résumé

Hypertension is one of the strongest risk factors for cardiovascular diseases, cerebral stroke, and kidney failure. Lifestyle and nutrition are important factors that modulate blood pressure. Hypertension can be controlled by increasing physical activity, decreasing alcohol and sodium intake, and stopping tobacco smoking. Chronic kidney disease patients often have increased blood pressure, which indicates that kidney is one of the major organs responsible for blood pressure homeostasis. The decrease of renal sodium reabsorption and increase of diuresis induced by high potassium intake is critical for the blood pressure reduction. The beneficial effect of a high potassium diet on hypertension could be explained by decreased salt reabsorption by sodium-chloride cotransporter (NCC) in the distal convoluted tubule (DCT). In DCT cells, NCC activity is controlled by with-no-lysine kinases (WNKs) and its down-stream target kinases, Ste20-related proline-alanine-rich kinase (SPAK) and oxidative stress-responsive 1 (OSR1). The kinase activity of WNKs is inhibited by intracellular chloride ([Cl-]i) and WNK4 is known to be the major WNK positively regulating NCC. Based on our previous studies, high potassium intake reduces the basolateral potassium conductance, decreases the negativity of DCT basolateral membrane (depolarization), and increases [Cl-]i. High [Cl-]i inhibits WNK4-SPAK/OSR1 pathway, and thereby decreases NCC phosphorylation. In this review, we discuss the role of DCT in the blood pressure regulation by dietary potassium intake, which is the mechanism that has been best dissected so far.


Sujets)
Humains , Pression sanguine , Régime alimentaire , Rein/métabolisme , Tubules contournés distaux/métabolisme , Phosphorylation , Potassium/pharmacologie , Protein-Serine-Threonine Kinases , Membre-3 de la famille-12 des transporteurs de solutés/métabolisme
11.
Article Dans Anglais | WPRIM | ID: wpr-929069

Résumé

Antibody-mediated rejection (AMR) is one of the major causes of graft loss after transplantation. Recently, the regulation of B cell differentiation and the prevention of donor-specific antibody (DSA) production have gained increased attention in transplant research. Herein, we established a secondary allogeneic in vivo skin transplant model to study the effects of romidepsin (FK228) on DSA. The survival of grafted skins was monitored daily. The serum levels of DSA and the number of relevant immunocytes in the recipient spleens were evaluated by flow cytometry. Then, we isolated and purified B cells from B6 mouse spleens in vitro by magnetic bead sorting. The B cells were cultured with interleukin-4 (IL-4) and anti-clusters of differentiation 40 (CD40) antibody with or without FK228 treatment. The immunoglobulin G1 (IgG1) and IgM levels in the supernatant were evaluated by enzyme-linked immunosorbent assay (ELISA). Quantitative reverse transcription-polymerase chain reaction (RT-qPCR) and western blotting were conducted to determine the corresponding levels of messenger RNA (mRNA) and protein expression in cultured cells and the recipient spleens. The results showed that FK228 significantly improved the survival of allogeneic skin grafts. Moreover, FK228 inhibited DSA production in the serum along with the suppression of histone deacetylase 1 (HADC1) and HDAC2 and the upregulation of the acetylation of histones H2A and H3. It also inhibited the differentiation of B cells to plasma cells, decreased the transcription of positive regulatory domain-containing 1 (Prdm1) and X-box-binding protein 1 (Xbp1), and decreased the expression of phosphorylated inositol-requiring enzyme 1 α (p-IRE1α), XBP1, and B lymphocyte-induced maturation protein-1 (Blimp-1). In conclusion, FK228 could decrease the production of antibodies by B cells via inhibition of the IRE1α-XBP1 signaling pathway. Thus, FK228 is considered as a promising therapeutic agent for the clinical treatment of AMR.


Sujets)
Animaux , Souris , Depsipeptides , Endoribonucleases , Transplantation de cellules souches hématopoïétiques , Inhibiteurs de désacétylase d'histone/pharmacologie , Protein-Serine-Threonine Kinases , Transplantation de peau
12.
Article Dans Chinois | WPRIM | ID: wpr-936371

Résumé

OBJECTIVE@#To investigate the effect of metformin on the proliferation and apoptosis of HER-2-positive breast cancer cell line SKBR3 and explore the possible mechanism of its action.@*METHODS@#SKBR3 cells were treated with different concentrations (20-120 μmol/L) of metformin, and the changes in cell proliferation and colony formation ability were assessed using CCK-8 assay and crystal violet staining, respectively. Flow cytometry was performed to analyze cell apoptosis and cell cycle changes. Real-time fluorescent quantitative PCR (qRT-PCR) was used to detect mRNA expressions of YAP, TAZ, EGFR, CTGF, CYR61, E-cadherin, N-cadherin, vimentin and fibronectin in the treated cells, and the protein expressions of YAP and TAZ were detected using Western blotting; immunofluorescence assay was used to observe YAP/TAZ nuclear translocation in the cells.@*RESULTS@#Metformin treatment significantly inhibited the proliferation of SKBR3 cells (P < 0.05) in a concentration- and time-dependent manner. The results of flow cytometry showed that metformin significantly promoted apoptosis and caused cell cycle arrest at G1 phase in SKBR3 cells. Metformin treatment significantly down-regulated the mRNA expressions of YAP, TAZ, EGFR, CTGF and CYR61, N-cadherin, vimentin and fibronectin (P < 0.05) and up-regulated the expression of E-cadherin (P < 0.05); Western blotting results showed that YAP and TAZ protein expressions were significantly down-regulated in the cells after metformin treatment (P < 0.05). Immunofluorescence assay revealed that metformin treatment caused the concentration of YAP and TAZ in the cytoplasm, and significantly reduced their amount in the cell nucleus.@*CONCLUSION@#Metformin can inhibit proliferation and promote apoptosis and epithelal-mesenchymal transition of HER-2 positive breast cancer cells possibly by that inhibing YAP and TAZ expression and their nuclear localization.


Sujets)
Apoptose , Cadhérines , Prolifération cellulaire , Récepteurs ErbB , Fibronectines , Metformine/pharmacologie , Tumeurs , Protein-Serine-Threonine Kinases , ARN messager , Facteurs de transcription/métabolisme , Vimentine
13.
Article Dans Chinois | WPRIM | ID: wpr-936334

Résumé

OBJECTIVE@#To explore the mechanism by which estradiol modulates the immunophenotype of macrophages through the endoplasmic reticulum stress pathway.@*METHODS@#Peritoneal macrophages isolated from C57 mice were cultured in the presence of 60 ng/mL interferon-γ (IFN-γ) followed by treatment with estradiol (1.0 nmol/L) alone, estradiol with estrogen receptor antagonist (Acolbifene, 4 nmol/L), estradiol with IRE1α inhibitor (4 μ 8 C), or estradiol with IRE1α agonist. After the treatments, the expression levels of MHC-Ⅱ, iNOS and endoplasmic reticulum stress marker proteins IRE1α, eIF2α and ATF6 in the macrophages were detected with Western blotting, and the mRNA levels of TGF-β, IL-6, IL-10 and TNF-α were detected with RT-PCR.@*RESULTS@#Estrogen treatment of the macrophages significantly decreased the expressions of M1-related proteins MHC-Ⅱ (P=0.021) and iNOS (P < 0.001) and the mRNA expressions of TNF-α (P=0.003) and IL-6 (P=0.004), increased the mRNA expression of TGF-β (P=0.002) and IL-10 (P=0.008), and up-regulated the protein expressions of IRE1α (P < 0.001) and its downstream transcription factor XBP-1 (P < 0.001). Addition of the estrogen inhibitor obviously blocked the effect of estrogen. Compared with estrogen treatment alone, combined treatment of the macrophages with estrogen and the IRE1α inhibitor 4 μ 8 C significantly up-regulated the protein expressions of MHC-Ⅱ (P=0.002) and iNOS (P=0.003) and the mRNA expressions of TNF-α (P=0.003) and IL-6 (P=0.024), and obviously down-regulated the mRNA expression of TGF-β (P < 0.001) and IL-10 (P < 0.001); these changes were not observed in cells treated with estrogen and the IRE1α agonist.@*CONCLUSION@#Estrogen can inhibit the differentiation of murine macrophages into a pro-inflammatory phenotype by up-regulating the IRE1α-XBP-1 signaling axis, thereby producing an inhibitory effect on inflammatory response.


Sujets)
Animaux , Souris , Différenciation cellulaire/effets des médicaments et des substances chimiques , Endoribonucleases/métabolisme , Oestradiol/pharmacologie , Oestrogènes/métabolisme , Interleukine-10 , Interleukine-6/métabolisme , Macrophages péritonéaux/métabolisme , Phénotype , Protein-Serine-Threonine Kinases/métabolisme , ARN messager/métabolisme , Transduction du signal/effets des médicaments et des substances chimiques , Facteur de croissance transformant bêta/métabolisme , Facteur de nécrose tumorale alpha/métabolisme , Régulation positive/effets des médicaments et des substances chimiques , Protéine-1 liant la boite X/métabolisme
14.
Article Dans Chinois | WPRIM | ID: wpr-941045

Résumé

OBJECTIVE@#To explore the role of salt-inducible kinase 2 (SIK2) in myocardial ischemia-reperfusion (IR) injury in rats.@*METHODS@#Fifteen male SD rats were randomized equally into sham operation group, myocardial IR model group, and SIK2 inhibitor group (in which the rats were treated with intravenous injection of 10 mg/kg bosutinib via the left femoral vein 24 h before modeling). Ultrasound was used to detect the cardiac function of the rats, and myocardial pathologies were observed with HE staining. Transmission electron microscopy was used to observe autophagy of myocardial cells, and Western blotting was performed to detect the contents of the autophagy-related proteins SIK2, LC3B, Beclin-1, p62 and the expressions of p-mTOR, mTOR, p-ULK1, and ULK1 in myocardial tissue.@*RESULTS@#Myocardial IR injury significantly increased the number of autophagosomes (P < 0.05) and the expression of SIK2 protein (P < 0.01) in the myocardial tissues. Treatment with bosutinib before modeling obviously lowered the expression of SIK2 protein (P < 0.01), alleviated myocardial pathologies, and reduced the number of autophagosomes (P < 0.05) in the myocardial tissue. The rats with myocardial IR injury showed obviously lowered LVEF and FS values (P < 0.001), which were significantly improved by bosutinib treatment (P < 0.05); no significant difference was detected in IVSDd or LVPWDd among the 3 groups (P > 0.05). Myocardial IR injury obviously increased the expressions of LC3-II/LC3-I and Beclin-1 proteins and lowered the expression of p62 protein (P < 0.01), and these changes were significantly rescued by bosutinib treatment (P < 0.05). The rat models of myocardial IR injury showed significantly increased expression of p-ULK1 (Ser757) (P < 0.01) and lowered expression of p-mTOR protein (P < 0.0001) in the myocardium, and these changes were obviously reversed by bosutinib (P < 0.01 or 0.05); there was no significant difference in mTOR and ULK1 expressions among the 3 groups (P > 0.05).@*CONCLUSION@#SIK2 may promote autophagy through the mTOR/ULK1 signaling pathway, and inhibiting SIK2 can reduce abnormal autophagy and alleviate myocardial IR injury in rats.


Sujets)
Animaux , Mâle , Rats , Autophagie , Homologue de la protéine-1 associée à l'autophagie/métabolisme , Bécline-1/métabolisme , Régulation négative , Lésion de reperfusion myocardique , Protein-Serine-Threonine Kinases , Rat Sprague-Dawley , Transduction du signal , Sérine-thréonine kinases TOR/métabolisme
15.
Article Dans Chinois | WPRIM | ID: wpr-941006

Résumé

OBJECTIVE@#To explore the mechanism by which inositol-requiring enzyme-1α (IRE1α) regulates autophagy function of chondrocytes through calcium homeostasis endoplasmic reticulum protein (CHERP).@*METHODS@#Cultured human chondrocytes (C28/I2 cells) were treated with tunicamycin, 4μ8c, rapamycin, or both 4μ8c and rapamycin, and the expressions of endoplasmic reticulum (ER) stress- and autophagy-related proteins were detected with Western blotting. Primary chondrocytes from ERN1 knockout (ERN1 CKO) mice and wild-type mice were examined for ATG5 and ATG7 mRNA expressions, IRE1α and p-IRE1α protein expressions, and intracellular calcium ion content using qPCR, Western blotting and flow cytometry. The effect of bafilomycin A1 treatment on LC3 Ⅱ/LC3 Ⅰ ratio in the isolated chondrocytes was assessed with Western blotting. Changes in autophagic flux of the chondrocytes in response to rapamycin treatment were detected using autophagy dual fluorescent virus. The changes in autophagy level in C28/I2 cells overexpressing CHERP and IRE1α were detected using immunofluorescence assay.@*RESULTS@#Tunicamycin treatment significantly up-regulated ER stress-related proteins and LC3 Ⅱ/LC3 Ⅰ ratio and down-regulated the expression of p62 in C28/I2 cells (P < 0.05). Rapamycin obviously up-regulated LC3 Ⅱ/LC3 Ⅰ ratio (P < 0.001) in C28/I2 cells, but this effect was significantly attenuated by co-treatment with 4μ8c (P < 0.05). Compared with the cells from the wild-type mice, the primary chondrocytes from ERN1 knockout mice showed significantly down-regulated mRNA levels of ERN1 (P < 0.01), ATG5 (P < 0.001) and ATG7 (P < 0.001), lowered or even lost expressions of IRE1α and p-IRE1α proteins (PP < 0.01), and increased expression of CHERP (P < 0.05) and intracellular calcium ion content (P < 0.001). Bafilomycin A1 treatment obviously increased LC3 Ⅱ/ LC3 Ⅰ ratio in the chondrocytes from both wild-type and ERN1 knockout mice (P < 0.01 or 0.05), but the increment was more obvious in the wild-type chondrocytes (P < 0.05). Treatment with autophagy dual-fluorescence virus resulted in a significantly greater fluorescence intensity of LC3-GFP in rapamycin-treated ERN1 CKO chondrocytes than in wild-type chondrocytes (P < 0.05). In C28/I2 cells, overexpression of CHERP obviously decreased the fluorescence intensity of LC3, and overexpression of IRE1α enhanced the fluorescence intensity and partially rescued the fluorescence reduction of LC3 caused by CHERP.@*CONCLUSION@#IRE1α deficiency impairs autophagy in chondrocytes by upregulating CHERP and increasing intracellular calcium ion content.


Sujets)
Animaux , Souris , Autophagie , Calcium/métabolisme , Chondrocytes , Réticulum endoplasmique/métabolisme , Endoribonucleases/pharmacologie , Homéostasie , Inositol , Souris knockout , Protein-Serine-Threonine Kinases , ARN messager/métabolisme , Sirolimus/pharmacologie , Tunicamycine/pharmacologie
16.
Chinese Medical Journal ; (24): 2054-2065, 2021.
Article Dans Anglais | WPRIM | ID: wpr-887637

Résumé

BACKGROUND@#The Nuclear Dbf2-related (NDR1) kinase is a member of the NDR/LATS family, which was a supplementary of Hippo pathway. However, whether NDR1 could inhibit glioblastoma (GBM) growth by phosphorylating Yes-associated protein (YAP) remains unknown. Meanwhile, the role of NDR1 in GBM was not clear. This study aimed to investigate the role of NDR1-YAP pathway in GBM.@*METHODS@#Bioinformation analysis and immunohistochemistry (IHC) were performed to identify the expression of NDR1 in GBM. The effect of NDR1 on cell proliferation and cell cycle was analyzed utilizing CCK-8, clone formation, immunofluorescence and flow cytometry, respectively. In addition, the xenograft tumor model was established as well. Protein interaction was examined by Co-immunoprecipitation and immunofluorescence to observe co-localization.@*RESULTS@#Bioinformation analysis and IHC of our patients' tumor tissues showed that expression of NDR1 in tumor tissue was relatively lower than that in normal tissues and was positively related to a lower survival rate. NDR1 could markedly reduce the proliferation and colony formation of U87 and U251. Furthermore, the results of flow cytometry showed that NDR1 led to cell cycle arrest at the G1 phase. Tumor growth was also inhibited in xenograft nude mouse models in NDR1-overexpression group. Western blotting and immunofluorescence showed that NDR1 could integrate with and phosphorylate YAP at S127 site. Meanwhile, NDR1 could mediate apoptosis process.@*CONCLUSION@#In summary, our findings point out that NDR1 functions as a tumor suppressor in GBM. NDR1 is identified as a novel regulator of YAP, which gives us an in-depth comprehension of the Hippo signaling pathway.


Sujets)
Animaux , Humains , Souris , Noyau de la cellule/métabolisme , Prolifération cellulaire , Glioblastome , Phosphorylation , Protein-Serine-Threonine Kinases/métabolisme , Transduction du signal
17.
Chinese Journal of Biotechnology ; (12): 1189-1204, 2021.
Article Dans Chinois | WPRIM | ID: wpr-878624

Résumé

The innate immune system initiates innate immune responses by recognizing pathogen-related molecular patterns on the surface of pathogenic microorganisms through pattern recognition receptors. Through cascade signal transduction, it activates downstream transcription factors NF-κB and interferon regulatory factors (IRFs), and then leads to the production of inflammatory cytokines and type Ⅰ interferon, which resists the infection of pathogenic microorganism. TBK1 is a central adapter protein of innate immune signaling pathway and can activate both NF-κB and IRFs. It is a key protein kinase in the process of anti-infection. The finetuning regulation of TBK1 is essential to maintain immune homeostasis and resist pathogen invasion. This paper reviews the biological functions and ubiquitin modification of TBK1 in innate immunity, to provide theoretical basis for clinical treatment of pathogenic infections and autoimmune diseases.


Sujets)
Immunité innée , Facteur-3 de régulation d'interféron/métabolisme , Protein-Serine-Threonine Kinases/génétique , Transduction du signal , Ubiquitine
18.
Acta Physiologica Sinica ; (6): 115-125, 2021.
Article Dans Chinois | WPRIM | ID: wpr-878241

Résumé

In eukaryotic cells, the endoplasmic reticulum (ER) is the key quality control organelle for cellular protein synthesis and processing. It also serves as an important site for Ca


Sujets)
Humains , Tissu adipeux , Diabète de type 2 , Stress du réticulum endoplasmique , Endoribonucleases , Protein-Serine-Threonine Kinases , eIF-2 Kinase
19.
Clin. biomed. res ; 41(3): 245-253, 20210000.
Article Dans Portugais | LILACS | ID: biblio-1348794

Résumé

Dentre os sistemas neurais responsáveis pela ingestão dos alimentos, destaca-se a via dopaminérgica mesolímbica que, através da liberação de dopamina nos núcleos de accumbens, desperta prazer e motivação para recompensas químicas e naturais. Esta via de recompensa age através dos receptores dopaminérgicos transmembranares, que variam de DRD1 a DRD5. Desta forma, considerando os efeitos prazerosos despertados pela ingestão alimentar, é plausível que variações genéticas em genes do sistema dopaminérgico possam ter um papel na arquitetura genética da obesidade. Este estudo tem como objetivo realizar uma revisão narrativa da literatura sobre a influência de variantes genéticas nos receptores dopaminérgicos em fenótipos relacionados com a obesidade. Em conjunto, os principais achados desta revisão indicaram que os genes codificadores dos receptores DRD2 e DRD4 possam ser os mais relevantes no contexto da obesidade e fenótipos relacionados. No entanto, a obesidade é uma doença complexa e multifatorial e novos estudos são ainda necessários para uma melhor compreensão do impacto da dopamina nos desfechos relacionado à obesidade. É importante também destacar que esses efeitos podem ser específicos para subgrupos de pacientes e que outros fatores, além das variantes genéticas, devem ser considerados. (AU)


Among the neural systems responsible for food ingestion, the mesolimbic dopaminergic pathway stands out by eliciting pleasure and motivation for chemical and natural rewards through the release of dopamine in the nucleus accumbens. This reward pathway is regulated by transmembrane dopaminergic receptors, which range from DRD1 to DRD5. Thus, considering the pleasurable effects aroused by food intake, it is plausible that genetic variations in genes of the dopaminergic system may have a role in the genetic architecture of obesity. This study aims to conduct a narrative review of the literature on the influence of genetic variants of dopaminergic receptors on obesity-related phenotypes. Taken together, the main findings of this review indicated that the genes encoding the DRD2 and DRD4 receptors may be the most relevant in the context of obesity and related phenotypes. However, obesity is a complex and multifactorial disease and new studies are still being conducted to better understand the impact of dopamine on obesity-related outcomes. It is also important to note that these effects can be specific to subgroups of patients and that other factors, in addition to genetic variants, must be considered. (AU)


Sujets)
Dopamine , Récepteurs dopaminergiques , Comportement alimentaire , Obésité , Protein-Serine-Threonine Kinases
20.
Braz. j. med. biol. res ; 54(8): e10062, 2021. tab, graf
Article Dans Anglais | LILACS | ID: biblio-1249323

Résumé

Long non-coding RNA (lncRNA) is an essential regulator of carcinogenesis and cancer progression. In the study, we explored the role of lncRNA DLGAP1-AS1 in gastric cancer (GC). qRT-PCR was carried out to detect DLGAP1-AS1 expression in GC tissues and cell lines. CCK-8 assay, EdU assay, and transwell experiments were employed to detect the malignant biological behaviors of GC cells with DLGAP1-AS1 knockdown or overexpression. Bioinformatics and dual-luciferase report assay were used to confirm the binding relationship between DLGAP1-AS1 and miR-515-5p. MARK4 expression was detected by western blot after DLGAP1-AS1/miR-515-5p was selectively regulated. DLGAP1-AS1 was up-regulated in GC tissues and cell lines, and its high expression was closely associated with larger tumor size, higher TNM stage, and lymph node metastasis. Furthermore, DLGAP1-AS1 overexpression enhanced cell proliferation, migration, and invasion, and miR-515-5p could reverse these effects. DLGAP1-AS1 participated in the regulation of the MARK4 signaling pathway by targeting miR-515-5p. DLGAP1-AS1 promoted GC progression through miR-515-5p/MARK4 signaling pathway.


Sujets)
Humains , Tumeurs de l'estomac/génétique , microARN/génétique , ARN long non codant/génétique , Régulation de l'expression des gènes tumoraux , Mouvement cellulaire/génétique , Protein-Serine-Threonine Kinases , Lignée cellulaire tumorale
SÉLECTION CITATIONS
Détails de la recherche