Your browser doesn't support javascript.
loading
Upregulation of miR-129-5p increases the sensitivity to Taxol through inhibiting HMGB1-mediated cell autophagy in breast cancer MCF-7 cells
Shi, Ying; Gong, Weihua; Lu, Lu; Wang, Yunfeng; Ren, Jingjing.
  • Shi, Ying; Third Affiliated Hospital of Zhengzhou University. Clinical Laboratory. CN
  • Gong, Weihua; Third Affiliated Hospital of Zhengzhou University. Clinical Laboratory. CN
  • Lu, Lu; Beijing Chaoyang Emergency Medical Center. Clinical Laboratory. CN
  • Wang, Yunfeng; Xiang Cheng City First Person Hospital. Clinical Laboratory. CN
  • Ren, Jingjing; Third Affiliated Hospital of Zhengzhou University. Clinical Laboratory. CN
Braz. j. med. biol. res ; 52(11): e8657, 2019. tab, graf
Article in English | LILACS | ID: biblio-1039263
ABSTRACT
Although Taxol has improved the survival of cancer patients as a first-line chemotherapeutic agent, an increasing number of patients develop resistance to Taxol after prolonged treatment. The potential mechanisms of cancer cell resistance to Taxol are not completely clear. It has been reported that microRNAs (miRNAs) are involved in regulating the sensitivity of cancer cells to various chemotherapeutic agents. In this study, we aimed to explore the role of miR-129-5p in regulating the sensitivity of breast cancer cells to Taxol. Cell apoptosis and autophagy, and the sensitivity of MCF-7 cells to Taxol were assessed with a series of in vitro assays. Our results showed that the inhibition of autophagy increased the Taxol-induced apoptosis and the sensitivity of MCF-7 cells to Taxol. Up-regulation of miR-129-5p also inhibited autophagy and induced apoptosis. Furthermore, miR-129-5p overexpression increased the sensitivity of MCF-7 cells to Taxol. High mobility group box 1 (HMGB1), a target gene of miR-129-5p and a regulator of autophagy, was negatively regulated by miR-129-5p. We found that interference of HMGB1 enhanced the chemosensitivity of Taxol by inhibiting autophagy and inducing apoptosis in MCF-7 cells. Taken together, our findings suggested that miR-129-5p increased the chemosensitivity of MCF-7 cells to Taxol through suppressing autophagy and enhancing apoptosis by inhibiting HMGB1. Using miR-129-5p/HMGB1/autophagy-based therapeutic strategies may be a potential treatment for overcoming Taxol resistance in breast cancer.
Subject(s)


Full text: Available Index: LILACS (Americas) Main subject: Breast Neoplasms / Paclitaxel / HMGB1 Protein / MicroRNAs / MCF-7 Cells / Antineoplastic Agents, Phytogenic Type of study: Diagnostic study Limits: Female / Humans Language: English Journal: Braz. j. med. biol. res Journal subject: Biology / Medicine Year: 2019 Type: Article Affiliation country: China Institution/Affiliation country: Beijing Chaoyang Emergency Medical Center/CN / Third Affiliated Hospital of Zhengzhou University/CN / Xiang Cheng City First Person Hospital/CN

Similar

MEDLINE

...
LILACS

LIS


Full text: Available Index: LILACS (Americas) Main subject: Breast Neoplasms / Paclitaxel / HMGB1 Protein / MicroRNAs / MCF-7 Cells / Antineoplastic Agents, Phytogenic Type of study: Diagnostic study Limits: Female / Humans Language: English Journal: Braz. j. med. biol. res Journal subject: Biology / Medicine Year: 2019 Type: Article Affiliation country: China Institution/Affiliation country: Beijing Chaoyang Emergency Medical Center/CN / Third Affiliated Hospital of Zhengzhou University/CN / Xiang Cheng City First Person Hospital/CN