Computational prediction and characterisation of miRNAs and their pathway genes in human schistosomiasis caused by Schistosoma haematobium
Mem. Inst. Oswaldo Cruz
; 115: e190378, 2020. tab, graf
Article
in En
| LILACS, SES-SP
| ID: biblio-1135284
Responsible library:
BR1.1
ABSTRACT
BACKGROUND Key genes control the infectivity of the Schistosoma haematobium causing schistosomiasis. A method for understanding the regulation of these genes might help in developing new disease strategies to control schistosomiasis, such as the silencing mediated by microRNAs (miRNAs). The miRNAs have been studied in schistosome species and they play important roles in the post-transcriptional regulation of genes, and in parasite-host interactions. However, genome-wide identification and characterisation of novel miRNAs and their pathway genes and their gene expression have not been explored deeply in the genome and transcriptome of S. haematobium. OBJECTIVES Identify and characterise mature and precursor miRNAs and their pathway genes in the S. haematobium genome. METHODS Computational prediction and characterisation of miRNAs and genes involved in miRNA pathway from S. haematobium genome on SchistoDB. Conserved domain analysis was performed using PFAM and CDD databases. A robust algorithm was applied to identify mature miRNAs and their precursors. The characterisation of the precursor miRNAs was performed using RNAfold, RNAalifold and Perl scripts. FINDINGS We identified and characterised 14 putative proteins involved in miRNA pathway including ARGONAUTE and DICER in S. haematobium. Besides that, 149 mature miRNAs and 131 precursor miRNAs were identified in the genome including novel miRNAs. MAIN CONCLUSIONS miRNA pathway occurs in the S. haematobium, including endogenous miRNAs and miRNA pathway components, suggesting a role of this type of non-coding RNAs in gene regulation in the parasite. The results found in this work will open up a new avenue for studying miRNAs in the S. haematobium biology in helping to understand the mechanism of gene silencing in the human parasite Schistosome.
Key words
Full text:
1
Index:
LILACS
Main subject:
Schistosoma haematobium
/
Schistosomiasis
/
Gene Expression Regulation
/
Computational Biology
/
MicroRNAs
Type of study:
Prognostic_studies
/
Risk_factors_studies
Limits:
Animals
/
Humans
Language:
En
Journal:
Mem. Inst. Oswaldo Cruz
Journal subject:
MEDICINA TROPICAL
/
PARASITOLOGIA
Year:
2020
Type:
Article