Your browser doesn't support javascript.
loading
Pharmacogenomic association study on the role of drug metabolizing, drug transporters and drug target gene polymorphisms in drug-resistant epilepsy in a north Indian population.
Indian J Hum Genet ; 2011 May; 17(Suppl 1): 32-40
Article in English | IMSEAR | ID: sea-138982
ABSTRACT

BACKGROUND:

In epilepsy, in spite of the best possible medications and treatment protocols, approximately one-third of the patients do not respond adequately to anti-epileptic drugs. Such interindividual variations in drug response are believed to result from genetic variations in candidate genes belonging to multiple pathways. MATERIALS AND

METHODS:

In the present pharmacogenetic analysis, a total of 402 epilepsy patients were enrolled. Of them, 128 were diagnosed as multiple drug-resistant epilepsy and 274 patients were diagnosed as having drug-responsive epilepsy. We selected a total of 10 candidate gene polymorphisms belonging to three major classes, namely drug transporters, drug metabolizers and drug targets. These genetic polymorphism included CYP2C9 c.430C>T (*2 variant), CYP2C9 c.1075 A>C (*3 variant), ABCB1 c.3435C>T, ABCB1c.1236C>T, ABCB1c.2677G>T/A, SCN1A c.3184 A> G, SCN2A c.56G>A (p.R19K), GABRA1c.IVS11 + 15 A>G and GABRG2 c.588C>T. Genotyping was performed using polymerase chain reaction-restriction fragment length polymorphism (PCR-RFLP) methods, and each genotype was confirmed via direct DNA sequencing. The relationship between various genetic polymorphisms and responsiveness was examined using binary logistic regression by SPSS statistical analysis software.

RESULTS:

CYP2C9 c.1075 A>C polymorphism showed a marginal significant difference between drug resistance and drug-responsive patients for the AC genotype (Odds ratio [OR] = 0.57, 95% confidence interval [CI] = 0.32–1.00; P = 0.05). In drug transporter, ABCB1c.2677G>T/A polymorphism, allele A was associated with drug-resistant phenotype in epilepsy patients (P = 0.03, OR = 0.31, 95% CI = 0.10-0.93). Similarly, the variant allele frequency of SCN2A c.56 G>A single nucleotide polymorphism was significantly higher in drug-resistant patients (P = 0.03; OR = 1.62, 95% CI = 1.03, 2.56). We also observed a significant difference at the genotype as well as allele frequencies of GABRA1c.IVS11 + 15 A > G polymorphism in drug-resistant patients for homozygous GG genotype (P = 0.03, OR = 1.84, 95% CI = 1.05–3.23) and G allele (P = 0.02, OR = 1.43, 95% CI = 1.05–1.95).

CONCLUSIONS:

Our results showed that pharmacogenetic variants have important roles in epilepsy at different levels. It may be noted that multi-factorial diseases like epilepsy are also regulated by various other factors that may also be considered in the future.

Full text: Available Index: IMSEAR (South-East Asia) Type of study: Practice guideline Language: English Journal: Indian J Hum Genet Year: 2011 Type: Article

Similar

MEDLINE

...
LILACS

LIS

Full text: Available Index: IMSEAR (South-East Asia) Type of study: Practice guideline Language: English Journal: Indian J Hum Genet Year: 2011 Type: Article