Protective effect of active ingredients of Kang Fu Ling on PC12 cells oxidative injury induced by microwave irradiation / 军事医学
Military Medical Sciences
; (12): 281-284, 2016.
Article
in Zh
| WPRIM
| ID: wpr-486477
Responsible library:
WPRO
ABSTRACT
Objective To observe the effect of the three active ingredients of a Chinese traditional medicine compound named Kang Fu Ling( KFL) against PC12 cells oxidative damage induced by microwave radiation.Methods PC12 cells were differentiated into neuros induced by nerve growth factor ( NGF ) .PC12 cells were incubated for 48 hours after astragalosides,total paeony glycoside and tanshinones were added at different concentrations (1, 3, or 9 μg/ml) .The cells in the control group were cultivated with the only medium of the same volume.Then, cells were irradiated with 30 mW/cm2 microwave for 6 minutes.The morphology of PC12 cells was observed under an inverted microscope soon before and after irradiation and the cell viability was measured by methylthiazolyl tetrazolium ( MTT) colorimetry.Reactive oxygen species ( ROS ) was determined using active oxygen probe 2′, 7′-dichlorodihyarofluolescen diacetde ( DCFH-DA ) while malonyldialdehyde(MDA) was measured in the homogenate of PC12 cells through thiobarbituric acid ( TBA) reactive substance assay.Results The cell morphology of each group showed no obvious difference.6 h after irradiation, the viability of irradiation control group measured by MTT declined apparently(P<0.01)compared with the normal control group.The 3 μg/ml astragalosides treatment group increased the viability of PC12 cells after microwave exposure ( P <0.01).The contents of ROS and MDA were increased after irradiation(P<0.01).However, in the three active ingredients of Kang Fu Ling treatment groups, both ROS and MDA were much lower than in irradiation control group.Conclusion Astragalosides, total paeony glycoside and tanshinones, which are the three active ingredients of Kang Fu Ling, all have protective effect against PC12 cell injury caused by microwave radiation,possibly by scavenging free radicals and reducing oxidative stress injury.
Full text:
1
Index:
WPRIM
Language:
Zh
Journal:
Military Medical Sciences
Year:
2016
Type:
Article