Your browser doesn't support javascript.
loading
Protective effect and mechanism of ginsenoside Rg1 on H2O2induced hippocampal neurons aging due to down-regulate NOX2 mediated NLRP1 inflammasome activation in vitro / 中国药理学与毒理学杂志
Chinese Journal of Pharmacology and Toxicology ; (6): 321-321, 2018.
Article in Chinese | WPRIM | ID: wpr-705352
ABSTRACT
OBJECTIVE To explore the protective effects and mechanisms of Ginsenoside Rg1 (Rg1) on H2O2-induced hippocampal neurons aging in vitro. METHODS The primary culture hippo-campal neurons(7 d)were randomly placed into six groupsnormal control group,H2O2(200 μM)treat-ment group,and H2O2+Rg1(1,5 and 10μM)groups.The neurons were with Rg1(1,5 and 10 μmol·L-1) for 6h. H2O2(200 μmol·L-1) was added to the medium and incubate for 18 h. The Dihydroethidium (DHE) staining was performed for ROS production assessment. The LDH release and Hoechst 33258 were performed to examine the neuronal damage and apoptosis. The immunoblot was used to deter-mine the expression of β-Gal,NOX2,p22phox,p47phox,NLRP-1,ASC and Caspase-1 in hippocampal neurons.The ELISA was performed to detect the levels of IL-1β and IL-18 released in the supernatant in hippocampal neurons.RESULTS Rg1(5 and 10 μmol·L-1)significantly reduced the ROS production, attenuated H2O2-induced neuronal damage and apoptosis (P<0.05, P<0.01). The immunoblot results showed that Rg1(5 and 10 μmol·L-1)treatment significantly decreased the expression of β-Gal,NOX2, p22phox,p47phox,NLRP-1,ASC and Caspase-1 in hippocampal neurons(P<0.05,P<0.01).Additionally, Rg1(5 and 10 μmol·L-1)treatment significantly decreased IL-1β and IL-18 release in the supernatant. CONCLUSION The protective effect of Rg1 in H2O2-induced hippocampal neurons aging may be due to inhibit NOX2-NLRP1 activation.

Full text: Available Index: WPRIM (Western Pacific) Language: Chinese Journal: Chinese Journal of Pharmacology and Toxicology Year: 2018 Type: Article

Similar

MEDLINE

...
LILACS

LIS

Full text: Available Index: WPRIM (Western Pacific) Language: Chinese Journal: Chinese Journal of Pharmacology and Toxicology Year: 2018 Type: Article