Your browser doesn't support javascript.
loading
Loss of O-GlcNAcylation on MeCP2 at Threonine 203 Leads to Neurodevelopmental Disorders / 神经科学通报·英文版
Neuroscience Bulletin ; (6): 113-134, 2022.
Article in English | WPRIM | ID: wpr-922681
ABSTRACT
Mutations of the X-linked methyl-CpG-binding protein 2 (MECP2) gene in humans are responsible for most cases of Rett syndrome (RTT), an X-linked progressive neurological disorder. While genome-wide screens in clinical trials have revealed several putative RTT-associated mutations in MECP2, their causal relevance regarding the functional regulation of MeCP2 at the etiologic sites at the protein level requires more evidence. In this study, we demonstrated that MeCP2 was dynamically modified by O-linked-β-N-acetylglucosamine (O-GlcNAc) at threonine 203 (T203), an etiologic site in RTT patients. Disruption of the O-GlcNAcylation of MeCP2 specifically at T203 impaired dendrite development and spine maturation in cultured hippocampal neurons, and disrupted neuronal migration, dendritic spine morphogenesis, and caused dysfunction of synaptic transmission in the developing and juvenile mouse cerebral cortex. Mechanistically, genetic disruption of O-GlcNAcylation at T203 on MeCP2 decreased the neuronal activity-induced induction of Bdnf transcription. Our study highlights the critical role of MeCP2 T203 O-GlcNAcylation in neural development and synaptic transmission potentially via brain-derived neurotrophic factor.
Subject(s)

Full text: Available Index: WPRIM (Western Pacific) Main subject: Threonine / Rett Syndrome / Synaptic Transmission / Methyl-CpG-Binding Protein 2 / Neurodevelopmental Disorders Limits: Animals / Humans Language: English Journal: Neuroscience Bulletin Year: 2022 Type: Article

Similar

MEDLINE

...
LILACS

LIS

Full text: Available Index: WPRIM (Western Pacific) Main subject: Threonine / Rett Syndrome / Synaptic Transmission / Methyl-CpG-Binding Protein 2 / Neurodevelopmental Disorders Limits: Animals / Humans Language: English Journal: Neuroscience Bulletin Year: 2022 Type: Article