Your browser doesn't support javascript.
Oridonin inhibits SARS-CoV-2 replication by targeting viral proteinase and polymerase.
Zhang, Zherui; Zhang, Hongqing; Zhang, Yanan; Zhang, Qiuyan; Liu, Qiaojie; Hu, Yanyan; Chen, Xiaoling; Wang, Jing; Shi, Yujia; Deng, Chenglin; Gong, Peng; Zhang, Bo; Li, Xiaodan; Zhu, Bing; Ye, Hanqing.
  • Zhang Z; Virus Laboratory, Institute of Pediatrics, Guangzhou Women and Children's Medical Center, Guangzhou Medical University, Guangzhou, 510623, China; Key Laboratory of Special Pathogens and Biosafety, Wuhan Institute of Virology, Center for Biosafety Mega-Science, Chinese Academy of Sciences, Wuhan, 430
  • Zhang H; Key Laboratory of Special Pathogens and Biosafety, Wuhan Institute of Virology, Center for Biosafety Mega-Science, Chinese Academy of Sciences, Wuhan, 430071, China; University of Chinese Academy of Sciences, Beijing, 100049, China.
  • Zhang Y; Virus Laboratory, Institute of Pediatrics, Guangzhou Women and Children's Medical Center, Guangzhou Medical University, Guangzhou, 510623, China; Key Laboratory of Special Pathogens and Biosafety, Wuhan Institute of Virology, Center for Biosafety Mega-Science, Chinese Academy of Sciences, Wuhan, 430
  • Zhang Q; Key Laboratory of Special Pathogens and Biosafety, Wuhan Institute of Virology, Center for Biosafety Mega-Science, Chinese Academy of Sciences, Wuhan, 430071, China.
  • Liu Q; Key Laboratory of Special Pathogens and Biosafety, Wuhan Institute of Virology, Center for Biosafety Mega-Science, Chinese Academy of Sciences, Wuhan, 430071, China.
  • Hu Y; Key Laboratory of Special Pathogens and Biosafety, Wuhan Institute of Virology, Center for Biosafety Mega-Science, Chinese Academy of Sciences, Wuhan, 430071, China; University of Chinese Academy of Sciences, Beijing, 100049, China.
  • Chen X; Key Laboratory of Special Pathogens and Biosafety, Wuhan Institute of Virology, Center for Biosafety Mega-Science, Chinese Academy of Sciences, Wuhan, 430071, China; University of Chinese Academy of Sciences, Beijing, 100049, China.
  • Wang J; Key Laboratory of Special Pathogens and Biosafety, Wuhan Institute of Virology, Center for Biosafety Mega-Science, Chinese Academy of Sciences, Wuhan, 430071, China; University of Chinese Academy of Sciences, Beijing, 100049, China.
  • Shi Y; Hunan Normal University, School of Medicine, Changsha, 410081, China.
  • Deng C; Key Laboratory of Special Pathogens and Biosafety, Wuhan Institute of Virology, Center for Biosafety Mega-Science, Chinese Academy of Sciences, Wuhan, 430071, China.
  • Gong P; Key Laboratory of Special Pathogens and Biosafety, Wuhan Institute of Virology, Center for Biosafety Mega-Science, Chinese Academy of Sciences, Wuhan, 430071, China; University of Chinese Academy of Sciences, Beijing, 100049, China.
  • Zhang B; Virus Laboratory, Institute of Pediatrics, Guangzhou Women and Children's Medical Center, Guangzhou Medical University, Guangzhou, 510623, China; Key Laboratory of Special Pathogens and Biosafety, Wuhan Institute of Virology, Center for Biosafety Mega-Science, Chinese Academy of Sciences, Wuhan, 430
  • Li X; Hunan Normal University, School of Medicine, Changsha, 410081, China. Electronic address: lxd@live.cn.
  • Zhu B; Virus Laboratory, Institute of Pediatrics, Guangzhou Women and Children's Medical Center, Guangzhou Medical University, Guangzhou, 510623, China. Electronic address: zhubing@gzhmu.edu.cn.
  • Ye H; Key Laboratory of Special Pathogens and Biosafety, Wuhan Institute of Virology, Center for Biosafety Mega-Science, Chinese Academy of Sciences, Wuhan, 430071, China. Electronic address: yehq@wh.iov.cn.
Virol Sin ; 38(3): 470-479, 2023 Jun.
Article in English | MEDLINE | ID: covidwho-2320882
ABSTRACT
COVID-19 has become a global public health crisis since its outbreak in China in December 2019. Currently there are few clinically effective drugs to combat SARS-CoV-2 infection. The main protein (Mpro), papain-like protease (PLpro) and RNA-dependent RNA polymerase (RdRp) of SARS-CoV-2 are involved in the viral replication, and might be prospective targets for anti-coronavirus drug development. Here, we investigated the antiviral activity of oridonin, a natural small-molecule compound, against SARS-CoV-2 infection in vitro. The time-of-addition analysis showed that oridonin efficiently inhibited SARS-CoV-2 infection by interfering with the genome replication at the post-entry stage. Mechanistically, the inhibition of viral replication by oridonin depends on the oxidation activity of α, ß-unsaturated carbonyl. Further experiments showed that oridonin not only effectively inhibited SARS-CoV-2 Mpro activity, but also had some inhibitory effects on PLpro-mediated deubiquitinating and viral polymerase-catalyzed RNA elongation activities at high concentrations. In particular, oridonin could inhibit the bat SARS-like CoV and the newly emerged SARS-CoV-2 omicron variants (BA.1 and BA.2), which highlights its potential as a pan-coronavirus antiviral agent. Overall, our data provide strong evidence that oridonin is an efficient antiviral agent against SARS-CoV-2 infection.
Subject(s)
Keywords

Full text: Available Collection: International databases Database: MEDLINE Main subject: SARS-CoV-2 / COVID-19 Type of study: Observational study / Prognostic study Topics: Variants Limits: Humans Language: English Journal: Virol Sin Journal subject: Virology Year: 2023 Document Type: Article

Similar

MEDLINE

...
LILACS

LIS


Full text: Available Collection: International databases Database: MEDLINE Main subject: SARS-CoV-2 / COVID-19 Type of study: Observational study / Prognostic study Topics: Variants Limits: Humans Language: English Journal: Virol Sin Journal subject: Virology Year: 2023 Document Type: Article