Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 16 de 16
Filtrar
1.
Cells ; 10(9)2021 08 27.
Artigo em Inglês | MEDLINE | ID: mdl-34571865

RESUMO

Leprosy reactional episodes are acute inflammatory events that may occur during the clinical course of the disease. Type 1 reaction (T1R) is associated with an increase in neural damage, and the understanding of the molecular pathways related to T1R onset is pivotal for the development of strategies that may effectively control the reaction. Interferon-gamma (IFN-γ) is a key cytokine associated with T1R onset and is also associated with autophagy induction. Here, we evaluated the modulation of the autophagy pathway in Mycobacterium leprae-stimulated cells in the presence or absence of IFN-γ. We observed that IFN-γ treatment promoted autophagy activation and increased the expression of genes related to the formation of phagosomes, autophagy regulation and function, or lysosomal pathways in M. leprae-stimulated cells. IFN-γ increased interleukin (IL)-15 secretion in M. leprae-stimulated THP-1 cells in a process associated with autophagy activation. We also observed higher IL15 gene expression in multibacillary (MB) patients who later developed T1R during clinical follow-up when compared to MB patients who did not develop the episode. By overlapping gene expression patterns, we observed 13 common elements shared between T1R skin lesion cells and THP-1 cells stimulated with both M. leprae and IFN-γ. Among these genes, the autophagy regulator Translocated Promoter Region, Nuclear Basket Protein (TPR) was significantly increased in T1R cells when compared with non-reactional MB cells. Overall, our results indicate that IFN-γ may induce a TPR-mediated autophagy transcriptional program in M. leprae-stimulated cells similar to that observed in skin cells during T1R by a pathway that involves IL-15 production, suggesting the involvement of this cytokine in the pathogenesis of T1R.


Assuntos
Autofagia/genética , Interleucina-15/genética , Hanseníase/genética , Adolescente , Adulto , Idoso , Idoso de 80 Anos ou mais , Células Cultivadas , Criança , Citocinas/genética , Feminino , Expressão Gênica/genética , Humanos , Interferon gama/genética , Hanseníase/microbiologia , Masculino , Pessoa de Meia-Idade , Mycobacterium leprae/patogenicidade , Pele/metabolismo , Pele/microbiologia , Células THP-1/metabolismo , Adulto Jovem
2.
Nat Immunol ; 22(7): 839-850, 2021 07.
Artigo em Inglês | MEDLINE | ID: mdl-34168371

RESUMO

Granulomas are complex cellular structures composed predominantly of macrophages and lymphocytes that function to contain and kill invading pathogens. Here, we investigated the single-cell phenotypes associated with antimicrobial responses in human leprosy granulomas by applying single-cell and spatial sequencing to leprosy biopsy specimens. We focused on reversal reactions (RRs), a dynamic process whereby some patients with disseminated lepromatous leprosy (L-lep) transition toward self-limiting tuberculoid leprosy (T-lep), mounting effective antimicrobial responses. We identified a set of genes encoding proteins involved in antimicrobial responses that are differentially expressed in RR versus L-lep lesions and regulated by interferon-γ and interleukin-1ß. By integrating the spatial coordinates of the key cell types and antimicrobial gene expression in RR and T-lep lesions, we constructed a map revealing the organized architecture of granulomas depicting compositional and functional layers by which macrophages, T cells, keratinocytes and fibroblasts can each contribute to the antimicrobial response.


Assuntos
Hanseníase Virchowiana/imunologia , Hanseníase Tuberculoide/imunologia , Mycobacterium leprae/imunologia , Pele/imunologia , Adolescente , Adulto , Idoso , Feminino , Fibroblastos/imunologia , Fibroblastos/microbiologia , Fibroblastos/patologia , Perfilação da Expressão Gênica , Interações Hospedeiro-Patógeno , Humanos , Queratinócitos/imunologia , Queratinócitos/microbiologia , Queratinócitos/patologia , Hanseníase Virchowiana/genética , Hanseníase Virchowiana/microbiologia , Hanseníase Virchowiana/patologia , Hanseníase Tuberculoide/genética , Hanseníase Tuberculoide/microbiologia , Hanseníase Tuberculoide/patologia , Macrófagos/imunologia , Macrófagos/microbiologia , Macrófagos/patologia , Masculino , Pessoa de Meia-Idade , Mycobacterium leprae/patogenicidade , RNA-Seq , Análise de Célula Única , Pele/microbiologia , Pele/patologia , Linfócitos T/imunologia , Linfócitos T/microbiologia , Linfócitos T/patologia , Transcriptoma
3.
Immunity ; 53(4): 878-894.e7, 2020 10 13.
Artigo em Inglês | MEDLINE | ID: mdl-33053333

RESUMO

High-throughput single-cell RNA-sequencing (scRNA-seq) methodologies enable characterization of complex biological samples by increasing the number of cells that can be profiled contemporaneously. Nevertheless, these approaches recover less information per cell than low-throughput strategies. To accurately report the expression of key phenotypic features of cells, scRNA-seq platforms are needed that are both high fidelity and high throughput. To address this need, we created Seq-Well S3 ("Second-Strand Synthesis"), a massively parallel scRNA-seq protocol that uses a randomly primed second-strand synthesis to recover complementary DNA (cDNA) molecules that were successfully reverse transcribed but to which a second oligonucleotide handle, necessary for subsequent whole transcriptome amplification, was not appended due to inefficient template switching. Seq-Well S3 increased the efficiency of transcript capture and gene detection compared with that of previous iterations by up to 10- and 5-fold, respectively. We used Seq-Well S3 to chart the transcriptional landscape of five human inflammatory skin diseases, thus providing a resource for the further study of human skin inflammation.


Assuntos
Sequenciamento de Nucleotídeos em Larga Escala/métodos , Inflamação/genética , RNA Citoplasmático Pequeno/genética , Pele/patologia , Animais , Linhagem Celular , DNA Complementar/genética , Células HEK293 , Humanos , Camundongos , Células NIH 3T3 , Análise de Sequência de RNA/métodos , Análise de Célula Única/métodos , Transcrição Gênica/genética , Transcriptoma/genética
4.
PLoS Negl Trop Dis ; 13(7): e0007589, 2019 07.
Artigo em Inglês | MEDLINE | ID: mdl-31344041

RESUMO

The initial interaction between a microbial pathogen and the host immune response influences the outcome of the battle between the host and the foreign invader. Leprosy, caused by the obligate intracellular pathogen Mycobacterium leprae, provides a model to study relevant human immune responses. Previous studies have adopted a targeted approach to investigate host response to M. leprae infection, focusing on the induction of specific molecules and pathways. By measuring the host transcriptome triggered by M. leprae infection of human macrophages, we were able to detect a host gene signature 24-48 hours after infection characterized by specific innate immune pathways involving the cell fate mechanisms autophagy and apoptosis. The top upstream regulator in the M. leprae-induced gene signature was NUPR1, which is found in the M. leprae-induced cell fate pathways. The induction of NUPR1 by M. leprae was dependent on the production of the type I interferon (IFN), IFN-ß. Furthermore, NUPR1 mRNA and protein were upregulated in the skin lesions from patients with the multibacillary form of leprosy. Together, these data indicate that M. leprae induces a cell fate program which includes NUPR1 as part of the host response in the progressive form of leprosy.


Assuntos
Fatores de Transcrição Hélice-Alça-Hélice Básicos/genética , Hanseníase/genética , Macrófagos/microbiologia , Mycobacterium leprae/imunologia , Proteínas de Neoplasias/genética , Células Cultivadas , Perfilação da Expressão Gênica , Regulação da Expressão Gênica , Humanos , Interferon Tipo I/imunologia , Hanseníase/imunologia , Hanseníase/microbiologia , Macrófagos/imunologia , Transdução de Sinais
5.
Cell Rep ; 26(13): 3574-3585.e3, 2019 03 26.
Artigo em Inglês | MEDLINE | ID: mdl-30917313

RESUMO

To understand how the interaction between an intracellular bacterium and the host immune system contributes to outcome at the site of infection, we studied leprosy, a disease that forms a clinical spectrum, in which progressive infection by the intracellular bacterium Mycobacterium leprae is characterized by the production of type I IFNs and antibody production. Dual RNA-seq on patient lesions identifies two independent molecular measures of M. leprae, each of which correlates with distinct aspects of the host immune response. The fraction of bacterial transcripts, reflecting bacterial burden, correlates with a host type I IFN gene signature, known to inhibit antimicrobial responses. Second, the bacterial mRNA:rRNA ratio, reflecting bacterial viability, links bacterial heat shock proteins with the BAFF-BCMA host antibody response pathway. Our findings provide a platform for the interrogation of host and pathogen transcriptomes at the site of infection, allowing insight into mechanisms of inflammation in human disease.


Assuntos
Hanseníase/imunologia , Hanseníase/microbiologia , Mycobacterium leprae/genética , RNA Bacteriano , RNA-Seq , Adulto , Anticorpos Antibacterianos/genética , Anticorpos Antibacterianos/imunologia , Fator Ativador de Células B/imunologia , Feminino , Interações Hospedeiro-Patógeno , Humanos , Imunidade Humoral/genética , Interferon Tipo I/metabolismo , Hanseníase/patologia , Masculino , Mycobacterium leprae/imunologia , Plasmócitos/imunologia , RNA Mensageiro , RNA Ribossômico , Transcriptoma
6.
Front Immunol ; 9: 1223, 2018.
Artigo em Inglês | MEDLINE | ID: mdl-29915584

RESUMO

Leprosy reactions are responsible for incapacities in leprosy and represent the major cause of permanent neuropathy. The identification of biomarkers able to identify patients more prone to develop reaction could contribute to adequate clinical management and the prevention of disability. Reversal reaction may occur in unstable borderline patients and also in lepromatous patients. To identify biomarker signature profiles related with the reversal reaction onset, multibacillary patients were recruited and classified accordingly the occurrence or not of reversal reaction during or after multidrugtherapy. Analysis of skin lesion cells at diagnosis of multibacillary leprosy demonstrated that in the group that developed reaction (T1R) in the future there was a downregulation of autophagy associated with the overexpression of TLR2 and MLST8. The autophagy impairment in T1R group was associated with increased expression of NLRP3, caspase-1 (p10) and IL-1ß production. In addition, analysis of IL-1ß production in serum from multibacillary patients demonstrated that patients who developed reversal reaction have significantly increased concentrations of IL-1ß at diagnosis, suggesting that the pattern of innate immune responses could predict the reactional episode outcome. In vitro analysis demonstrated that the blockade of autophagy with 3-methyladenine (3-MA) in Mycobacterium leprae-stimulated human primary monocytes increased the assembly of NLRP3 specks assembly, and it was associated with an increase of IL-1ß and IL-6 production. Together, our data suggest an important role for autophagy in multibacillary leprosy patients to avoid exacerbated inflammasome activation and the onset of reversal reaction.


Assuntos
Autofagia , Inflamassomos/metabolismo , Hanseníase Multibacilar/etiologia , Hanseníase Multibacilar/metabolismo , Adulto , Idoso , Biomarcadores , Feminino , Perfilação da Expressão Gênica , Regulação da Expressão Gênica , Humanos , Imunidade Inata , Interleucina-1beta/metabolismo , Hanseníase Multibacilar/patologia , Leucócitos Mononucleares/imunologia , Leucócitos Mononucleares/metabolismo , Masculino , Pessoa de Meia-Idade , Monócitos/imunologia , Monócitos/metabolismo , Monócitos/microbiologia , Mycobacterium leprae/fisiologia , Proteína 3 que Contém Domínio de Pirina da Família NLR/metabolismo , Transdução de Sinais , Transcriptoma
7.
Microbes Infect ; 19(11): 505-514, 2017 11.
Artigo em Inglês | MEDLINE | ID: mdl-28684130

RESUMO

Our previous study has demonstrated that IL-10 may modulate both indoleamine 2,3-dioxygenase (IDO) and CD163 expression in lepromatous leprosy (LL) cells, favoring Mycobacterium leprae persistence through induction of regulatory pathways and iron storage. Here, we observed that in LL lesion cells there is an increase in the expression of proteins involved in iron metabolism such as hemoglobin (Hb), haptoglobin, heme oxygenase 1 and transferrin receptor 1 (TfR1) when compared to tuberculoid leprosy (BT) cells. We also found increased iron deposits and diminished expression of the iron exporter ferroportin 1 in LL lesion cells. Hemin, but not FeSO4 stimulation, was able to enhance M. leprae viability by a mechanism that involves IDO. Analysis of cell phenotype in lesions demonstrated a predominance of M2 markers in LL when compared with BT lesion cells. A positive correlation between CD163 and PPARG with the bacillary index (BI) was observed. In contrast, TNF, STAT1 and CSF2 presented a negative correlation with the BI. In summary, this study demonstrates that iron may regulate IDO expression by a mechanism that involves IL-10, which may contribute for the predominance of M2-like phenotype in LL lesions that favors the phagocytosis and maintenance of M. leprae in host cells.


Assuntos
Indolamina-Pirrol 2,3,-Dioxigenase/fisiologia , Ferro/fisiologia , Mycobacterium leprae/fisiologia , Adulto , Feminino , Humanos , Immunoblotting , Técnicas Imunoenzimáticas , Indolamina-Pirrol 2,3,-Dioxigenase/metabolismo , Ferro/metabolismo , Hanseníase Virchowiana/metabolismo , Hanseníase Virchowiana/microbiologia , Masculino , Pessoa de Meia-Idade , Mycobacterium leprae/metabolismo , Reação em Cadeia da Polimerase Via Transcriptase Reversa
8.
PLoS Pathog ; 13(1): e1006103, 2017 01.
Artigo em Inglês | MEDLINE | ID: mdl-28056107

RESUMO

Leprosy is a chronic infectious disease that may present different clinical forms according to the immune response of the host. Levels of IFN-γ are significantly raised in paucibacillary tuberculoid (T-lep) when compared with multibacillary lepromatous (L-lep) patients. IFN-γ primes macrophages for inflammatory activation and induces the autophagy antimicrobial mechanism. The involvement of autophagy in the immune response against Mycobacterium leprae remains unexplored. Here, we demonstrated by different autophagic assays that LC3-positive autophagosomes were predominantly observed in T-lep when compared with L-lep lesions and skin-derived macrophages. Accumulation of the autophagic receptors SQSTM1/p62 and NBR1, expression of lysosomal antimicrobial peptides and colocalization analysis of autolysosomes revealed an impairment of the autophagic flux in L-lep cells, which was restored by IFN-γ or rapamycin treatment. Autophagy PCR array gene-expression analysis revealed a significantly upregulation of autophagy genes (BECN1, GPSM3, ATG14, APOL1, and TPR) in T-lep cells. Furthermore, an upregulation of autophagy genes (TPR, GFI1B and GNAI3) as well as LC3 levels was observed in cells of L-lep patients that developed type 1 reaction (T1R) episodes, an acute inflammatory condition associated with increased IFN-γ levels. Finally, we observed increased BCL2 expression in L-lep cells that could be responsible for the blockage of BECN1-mediated autophagy. In addition, in vitro studies demonstrated that dead, but not live M. leprae can induce autophagy in primary and lineage human monocytes, and that live mycobacteria can reduce the autophagy activation triggered by dead mycobacteria, suggesting that M. leprae may hamper the autophagic machinery as an immune escape mechanism. Together, these results indicate that autophagy is an important innate mechanism associated with the M. leprae control in skin macrophages.


Assuntos
Autofagia/fisiologia , Hanseníase/imunologia , Pele/microbiologia , Adulto , Idoso , Western Blotting , Ensaio de Imunoadsorção Enzimática , Feminino , Imunofluorescência , Humanos , Imuno-Histoquímica , Interferon gama/imunologia , Hanseníase/patologia , Macrófagos/imunologia , Masculino , Microscopia Eletrônica de Transmissão , Pessoa de Meia-Idade , Mycobacterium leprae/imunologia , Reação em Cadeia da Polimerase , Pele/imunologia , Pele/patologia , Transcriptoma , Adulto Jovem
9.
s.l; Elsevier; 2017. 10 p. tab, graf.
Não convencional em Inglês | HANSEN, Sec. Est. Saúde SP, Hanseníase, SESSP-ILSLPROD, Sec. Est. Saúde SP, SESSP-ILSLACERVO, Sec. Est. Saúde SP | ID: biblio-1052567

RESUMO

Our previous study has demonstrated that IL-10 may modulate both indoleamine 2,3-dioxygenase (IDO) and CD163 expression in lepromatous leprosy (LL) cells, favoring Mycobacterium leprae persistence through induction of regulatory pathways and iron storage. Here, we observed that in LL lesion cells there is an increase in the expression of proteins involved in iron metabolism such as hemoglobin (Hb), haptoglobin, heme oxygenase 1 and transferrin receptor 1 (TfR1) when compared to tuberculoid leprosy (BT) cells. We also found increased iron deposits and diminished expression of the iron exporter ferroportin 1 in LL lesion cells. Hemin, but not FeSO stimulation, was able to enhance M. leprae viability by a mechanism that involves IDO. Analysis of cell phenotype in lesions demonstrated a predominance of M2 markers in LL when compared with BT lesion cells. A positive correlation between CD163 and PPARG with the bacillary index (BI) was observed. In contrast, TNF, STAT1 and CSF2 presented a negative correlation with the BI. In summary, this study demonstrates that iron may regulate IDO expression by a mechanism that involves IL-10, which may contribute for the predominance of M2-like phenotype in LL lesions that favors the phagocytosis and maintenance of M. leprae in host cells.


Assuntos
Humanos , Masculino , Feminino , Adulto , Pessoa de Meia-Idade , Immunoblotting , Hanseníase Virchowiana/metabolismo , Hanseníase Virchowiana/microbiologia , Técnicas Imunoenzimáticas , Reação em Cadeia da Polimerase Via Transcriptase Reversa , Indolamina-Pirrol 2,3,-Dioxigenase/fisiologia , Indolamina-Pirrol 2,3,-Dioxigenase/metabolismo , Ferro/fisiologia , Ferro/metabolismo , Mycobacterium leprae/fisiologia , Mycobacterium leprae/metabolismo
10.
s.l; s.n; 2017. 29 p. tab, graf.
Não convencional em Inglês | HANSEN, Sec. Est. Saúde SP, Hanseníase | ID: biblio-1053527

RESUMO

Leprosy is a chronic infectious disease that may present different clinical forms according to the immune response of the host. Levels of IFN-γ are significantly raised in paucibacillary tuberculoid (T-lep) when compared with multibacillary lepromatous (L-lep) patients. IFN-γ primes macrophages for inflammatory activation and induces the autophagy antimicrobial mechanism. The involvement of autophagy in the immune response against Mycobacterium leprae remains unexplored. Here, we demonstrated by different autophagic assays that LC3-positive autophagosomes were predominantly observed in T-lep when compared with L-lep lesions and skin-derived macrophages. Accumulation of the autophagic receptors SQSTM1/p62 and NBR1, expression of lysosomal antimicrobial peptides and colocalization analysis of autolysosomes revealed an impairment of the autophagic flux in L-lep cells, which was restored by IFN-γ or rapamycin treatment. Autophagy PCR array gene-expression analysis revealed a significantly upregulation of autophagy genes (BECN1, GPSM3, ATG14, APOL1, and TPR) in T-lep cells. Furthermore, an upregulation of autophagy genes (TPR, GFI1B and GNAI3) as well as LC3 levels was observed in cells of L-lep patients that developed type 1 reaction (T1R) episodes, an acute inflammatory condition associated with increased IFN-γ levels. Finally, we observed increased BCL2 expression in L-lep cells that could be responsible for the blockage of BECN1-mediated autophagy. In addition, in vitro studies demonstrated that dead, but not live M. leprae can induce autophagy in primary and lineage human monocytes, and that live mycobacteria can reduce the autophagy activation triggered by dead mycobacteria, suggesting that M. leprae may hamper the autophagic machinery as an immune escape mechanism. Together, these results indicate that autophagy is an important innate mechanism associated with the M. leprae control in skin macrophages.


Assuntos
Humanos , Masculino , Feminino , Adulto , Pessoa de Meia-Idade , Idoso , Adulto Jovem , Pele/imunologia , Pele/microbiologia , Pele/patologia , Autofagia/fisiologia , Ensaio de Imunoadsorção Enzimática , Imuno-Histoquímica , Western Blotting , Reação em Cadeia da Polimerase , Imunofluorescência , Interferon gama/imunologia , Microscopia Eletrônica de Transmissão , Transcriptoma , Hanseníase/imunologia , Hanseníase/patologia , Macrófagos/imunologia , Mycobacterium leprae/imunologia
11.
JCI Insight ; 1(15): e88843, 2016 09 22.
Artigo em Inglês | MEDLINE | ID: mdl-27699251

RESUMO

Transcriptome profiles derived from the site of human disease have led to the identification of genes that contribute to pathogenesis, yet the complex mixture of cell types in these lesions has been an obstacle for defining specific mechanisms. Leprosy provides an outstanding model to study host defense and pathogenesis in a human infectious disease, given its clinical spectrum, which interrelates with the host immunologic and pathologic responses. Here, we investigated gene expression profiles derived from skin lesions for each clinical subtype of leprosy, analyzing gene coexpression modules by cell-type deconvolution. In lesions from tuberculoid leprosy patients, those with the self-limited form of the disease, dendritic cells were linked with MMP12 as part of a tissue remodeling network that contributes to granuloma formation. In lesions from lepromatous leprosy patients, those with disseminated disease, macrophages were linked with a gene network that programs phagocytosis. In erythema nodosum leprosum, neutrophil and endothelial cell gene networks were identified as part of the vasculitis that results in tissue injury. The present integrated computational approach provides a systems approach toward identifying cell-defined functional networks that contribute to host defense and immunopathology at the site of human infectious disease.


Assuntos
Redes Reguladoras de Genes , Hanseníase/genética , Hanseníase/imunologia , Adolescente , Adulto , Eritema Nodoso/genética , Eritema Nodoso/imunologia , Feminino , Humanos , Hanseníase Virchowiana/genética , Hanseníase Virchowiana/imunologia , Hanseníase Tuberculoide/genética , Hanseníase Tuberculoide/imunologia , Masculino , Pessoa de Meia-Idade , Transcriptoma , Adulto Jovem
12.
J Neuropathol Exp Neurol ; 75(3): 272-83, 2016 Mar.
Artigo em Inglês | MEDLINE | ID: mdl-26888306

RESUMO

Mycobacterium leprae (ML) infection causes nerve damage that often leads to permanent loss of cutaneous sensitivity and limb deformities, but understanding of the pathogenesis of leprous neuropathy that would lead to more effective treatments is incomplete. We studied reactional leprosy patients with (n = 9) and without (n = 8) acute neuritis. Nerve conduction studies over the course of the reactional episode showed the findings of demyelination in all patients with neuritis. Evaluation of patient sera revealed no correlation of the presence of antibodies against gangliosides and the clinical demyelination. In nerve biopsies of 3 patients with neuritis, we identified tumor necrosis factor (TNF), TNF receptors, and TNF-converting enzyme in Schwann cells (SCs) using immunofluorescence. To elucidate immunopathogenetic mechanisms, we performed experiments using a human SC line. ML induced transmembrane TNF and TNF receptor 1 expression in the SCs; TNF also induced interleukin (IL)- 6 and IL-8 production by the SCs; and ML induced IL-23 secretion, indicating involvement of this previously unrecognized factor in leprosy nerve damage. These data suggest that ML may contribute to TNF-mediated inflammation and focal demyelination by rendering SCs more sensitive to TNF within the nerves of patients with leprous neuropathy.


Assuntos
Citocinas/metabolismo , Doenças Desmielinizantes/complicações , Doenças Desmielinizantes/metabolismo , Hanseníase/complicações , Neurite (Inflamação)/complicações , Adulto , Idoso , Linhagem Celular Transformada , Citocinas/genética , Doenças Desmielinizantes/patologia , Estimulação Elétrica , Feminino , Expressão Gênica/efeitos dos fármacos , Expressão Gênica/fisiologia , Humanos , Masculino , Pessoa de Meia-Idade , Mycobacterium leprae/fisiologia , Proteínas do Tecido Nervoso/metabolismo , Condução Nervosa/fisiologia , Exame Neurológico , Tempo de Reação , Células de Schwann/efeitos dos fármacos , Células de Schwann/metabolismo , Fator de Necrose Tumoral alfa/farmacologia , Adulto Jovem
13.
Expert Rev Clin Immunol ; 11(3): 391-407, 2015 Mar.
Artigo em Inglês | MEDLINE | ID: mdl-25666357

RESUMO

Type 1 reaction (T1R) or reversal reaction is the leading cause of physical disabilities and deformities in leprosy. Leprosy patients, even after being considered cured and released from treatment, may suffer from reactional episodes for long periods of time. Early diagnosis is a great challenge for effectively treating and managing T1R. There is an urgent need to identify the most significant biomarkers to prevent recurrent T1R and to differentiate late T1R from relapse. T1R continues to be treated with corticosteroids and complications due to iatrogenic treatment remain frequent. This review aims to provide a framework from which to approach the great challenges that still persist in T1R management and debate key issues in order to reduce the distance between basic research and the clinic.


Assuntos
Corticosteroides/uso terapêutico , Imunossupressores/uso terapêutico , Hansenostáticos/uso terapêutico , Hanseníase/terapia , Mycobacterium leprae/imunologia , Animais , Ensaios Clínicos como Assunto , Humanos , Interferon gama/antagonistas & inibidores , Hansenostáticos/farmacologia , Hanseníase/imunologia , Fator de Crescimento Transformador beta/antagonistas & inibidores
14.
Infect Immun ; 82(9): 3968-78, 2014 Sep.
Artigo em Inglês | MEDLINE | ID: mdl-25024361

RESUMO

Intracellular Mycobacterium leprae infection modifies host macrophage programming, creating a protective niche for bacterial survival. The milieu regulating cellular apoptosis in the tissue plays an important role in defining susceptible and/or resistant phenotypes. A higher density of apoptotic cells has been demonstrated in paucibacillary leprosy lesions than in multibacillary ones. However, the effect of apoptotic cell removal on M. leprae-stimulated cells has yet to be fully elucidated. In this study, we investigated whether apoptotic cell removal (efferocytosis) induces different phenotypes in proinflammatory (Mϕ1) and anti-inflammatory (Mϕ2) macrophages in the presence of M. leprae. We stimulated Mϕ1 and Mϕ2 cells with M. leprae in the presence or absence of apoptotic cells and subsequently evaluated the M. leprae uptake, cell phenotype, and cytokine pattern in the supernatants. In the presence of M. leprae and apoptotic cells, Mϕ1 macrophages changed their phenotype to resemble the Mϕ2 phenotype, displaying increased CD163 and SRA-I expression as well as higher phagocytic capacity. Efferocytosis increased M. leprae survival in Mϕ1 cells, accompanied by reduced interleukin-15 (IL-15) and IL-6 levels and increased transforming growth factor beta (TGF-ß) and IL-10 secretion. Mϕ1 cells primed with M. leprae in the presence of apoptotic cells induced the secretion of Th2 cytokines IL-4 and IL-13 in autologous T cells compared with cultures stimulated with M. leprae or apoptotic cells alone. Efferocytosis did not alter the Mϕ2 cell phenotype or cytokine secretion profile, except for TGF-ß. Based on these data, we suggest that, in paucibacillary leprosy patients, efferocytosis contributes to mycobacterial persistence by increasing the Mϕ2 population and sustaining the infection.


Assuntos
Apoptose/imunologia , Hanseníase/imunologia , Macrófagos/imunologia , Mycobacterium leprae/imunologia , Linhagem Celular Tumoral , Células Cultivadas , Humanos , Interleucinas/imunologia , Células Jurkat , Hanseníase/microbiologia , Fagocitose/imunologia , Fator de Crescimento Transformador beta/imunologia
15.
Rio de Janeiro; s.n; 2014. xvi,118 p. ilus, tab, mapas.
Tese em Português | LILACS | ID: lil-774170

RESUMO

Na hanseníase, a reação reversa (RR) é considerada um fenômeno de reativação imune, no qual uma resposta inflamatória abrupta se inicia, comprometendo a pele e os nervos periféricos.A RR ocorre ao longo do espectro da hanseníase, sendo descrita, inclusive, nas formas anérgicas lepromatosas (LL) subpolares. É sugerido que nas formas reacionais, células imunes da pele como macrófagos e células dendríticas, se tornam ativadas espontaneamente e iniciam uma resposta imune contra componentes do Mycobacterium leprae (ML), o que levaria a quebrada imunossupressão pré-existente. O objetivo desse estudo é caracterizar as populaçõescelulares que constituem as lesões de pele L-lep (BL e LL) antes e no início da RR, assim como,determinar a programação genética envolvida na quebra da anergia tecidual nesse grupo durante esse episódio. O início da RR altera drasticamente a organização e morfologia da lesãoL-lep, levando ao aparecimento de novas estruturas e tipos celulares, como células epitelioides,granulomas e uma grande diversidade fenotípica de macrófagos e células dendríticas. Omarcador de células dendríticas plasmocitoides, CD123, foi mais expresso em lesões de pele RRdo que no tecido não reacional, com a população CD123+ exibindo tanto marcadores fenotípicosde macrófagos quanto de células dendríticas. Por sua vez, o ML pôde induzir a expressão dessa molécula in vitro...


A análise de expressão gênica mostrou um aumento dos níveis de RNA mensageiro da interleucina-3 (IL-3), fator estimulador de colônias de macrófagos (M-CSF), fatorestimulador de colônias de macrófagos e granulócitos (GM-CSF), fator de necrose tumoral-alfa(TNFalfa), interferon-gama (IFN-gama), indoleamina-2,3-dioxigenase (IDO), interleucina-15 (IL-15), receptorde vitamina D (VDR), quimiocina CXCL10 e receptor Toll-like 2 (TLR2) nas lesões RR quandoem comparação com o grupo L-lep. Em síntese, nosso estudo demonstrou que o microambienteda lesão RR favorece a diferenciação e plasticidade celular, além de exibir uma variedade depopulações mielomonocíticas, destacando o papel das células CD123+ e de um eixo de ativaçãodependente de IL-3 durante a RR...


In leprosy, type 1 reaction (T1R) is considered a Th1 immune reactivation in which a suddeninflammatory response takes place that compromises the skin and peripheral nerves. T1R occursacross the leprosy clinical spectrum and has even been described in the anergic subpolarlepromatous (LL) forms. It is hypothesized that in the T1R forms, skin immune cells such asmacrophages and dendritic cells (DCs) become activated, which in turn could initiate a localinnate immune response against the existing Mycobacterium leprae (ML) components,overwhelming the predominant immunosuppressive state. The aim of the present study is tocharacterize the skin cellular populations that constitute the BL and LL (L-lep) skin lesion beforeand during the T1R episode, as well as to determine the gene programming involved in thedisruption of the tissue immunosuppression brought about by this phenomenon. The outset ofT1R drastically alters the morphological landscape of the LL skin lesion, leading to theappearance of new structures and cell types such as epithelioid granulomas and a wide variety ofmacrophagic and DC phenotypes. The plasmacytoid DC marker, CD123, was more intenselyexpressed in T1R skin lesions than in non-reactional tissue, with CD123+ cells exhibiting bothmacrophagic and DC phenotypic markers. In turn, ML, but not TNF-alpha, was able to increaseCD123 expression while gene expression analyses demonstrated IL-3, M-CSF, GM-CSF, TNFalpha,IFN-gama, IDO, IL-15, VDR, CXCL10, and TLR2 up regulation in the T1R lesions in comparison to thenon-reactional group. In summary, our study showed that the T1R lesion environment favors celldifferentiation and plasticity in addition to displaying a high diversity of myelomonocyticpopulations and highlighting the role of CD123+ cells and the IL-3 axis during the progression ofT1R...


Assuntos
Camundongos , Células Dendríticas , Hanseníase/epidemiologia , Macrófagos , Imunofluorescência
16.
Eur J Immunol ; 42(11): 2925-36, 2012 Nov.
Artigo em Inglês | MEDLINE | ID: mdl-22851198

RESUMO

Lepromatous macrophages possess a regulatory phenotype that contributes to the immunosuppression observed in leprosy. CD163, a scavenger receptor that recognizes hemoglobin-haptoglobin complexes, is expressed at higher levels in lepromatous cells, although its functional role in leprosy is not yet established. We herein demonstrate that human lepromatous lesions are microenvironments rich in IDO⁺CD163⁺. Cells isolated from these lesions were CD68⁺IDO⁺CD163⁺ while higher levels of sCD163 in lepromatous sera positively correlated with IL-10 levels and IDO activity. Different Myco-bacterium leprae (ML) concentrations in healthy monocytes likewise revealed a positive correlation between increased concentrations of the mycobacteria and IDO, CD209, and CD163 expression. The regulatory phenotype in ML-stimulated monocytes was accompanied by increased TNF, IL-10, and TGF-ß levels whereas IL-10 blockade reduced ML-induced CD163 expression. The CD163 blockade reduced ML uptake in human monocytes. ML uptake was higher in HEK293 cells transfected with the cDNA for CD163 than in untransfected cells. Simultaneously, increased CD163 expression in lepromatous cells seemed to be dependent on ML uptake, and contributed to augmented iron storage in lepromatous macrophages. Altogether, these results suggest that ML-induced CD163 expression modulates the host cell phenotype to create a favorable environment for myco-bacterial entry and survival.


Assuntos
Antígenos CD/imunologia , Antígenos de Diferenciação Mielomonocítica/imunologia , Hanseníase Virchowiana/imunologia , Hanseníase Virchowiana/microbiologia , Macrófagos/imunologia , Mycobacterium leprae/imunologia , Receptores de Superfície Celular/imunologia , Antígenos CD/genética , Antígenos de Diferenciação Mielomonocítica/genética , Biópsia , Citometria de Fluxo , Humanos , Indolamina-Pirrol 2,3,-Dioxigenase/imunologia , Interleucina-10/imunologia , Hanseníase Virchowiana/patologia , Macrófagos/microbiologia , RNA Mensageiro/química , RNA Mensageiro/genética , Receptores de Superfície Celular/genética , Reação em Cadeia da Polimerase Via Transcriptase Reversa
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA