Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 6 de 6
Filtrar
1.
Biochem Biophys Res Commun ; 357(3): 809-14, 2007 Jun 08.
Artigo em Inglês | MEDLINE | ID: mdl-17451651

RESUMO

Mycobacterium leprae truncated hemoglobin O (trHbO) protects from nitrosative stress and sustains mycobacterial respiration. Here, kinetics of M. leprae trHbO(II)-NO denitrosylation and of O(2)-mediated oxidation of M. leprae trHbO(II)-NO are reported. Values of the first-order rate constant for *NO dissociation from M. leprae trHbO(II)-NO (k(off)) and of the first-order rate constant for O(2)-mediated oxidation of M. leprae trHbO(II)-NO (h) are 1.3 x 10(-4) s(-1) and 1.2 x 10(-4) s(-1), respectively. The coincidence of values of k(off) and h suggests that O(2)-mediated oxidation of M. leprae trHbO(II)-NO occurs with a reaction mechanism in which *NO, that is initially bound to heme(II), is displaced by O(2) but may stay trapped in a protein cavity(ies) close to heme(II). Next, M. leprae trHbO(II)-O(2) reacts with *NO giving the transient Fe(III)-OONO species preceding the formation of the final product M. leprae trHbO(III). *NO dissociation from heme(II)-NO represents the rate limiting step for O(2)-mediated oxidation of M. leprae trHbO(II)-NO.


Assuntos
Proteínas de Bactérias/química , Hemoglobinas/química , Óxido Nítrico/química , Oxigênio/química , Proteínas de Bactérias/genética , Monóxido de Carbono/química , Compostos Ferrosos/química , Heme/química , Hemoglobinas/genética , Cinética , Modelos Químicos , Oxirredução , Proteínas Recombinantes/química , Hemoglobinas Truncadas
2.
Biochem Biophys Res Commun ; 339(1): 450-6, 2006 Jan 06.
Artigo em Inglês | MEDLINE | ID: mdl-16307730

RESUMO

Ferrous oxygenated (Fe(II)O2) hemoglobins (Hb's) and myoglobins (Mb's) have been shown to react very rapidly with NO, yielding NO3(-) and the ferric heme-protein derivative (Fe(III)), by means of the ferric heme-bound peroxynitrite intermediate (Fe(III)OONO), according to the minimum reaction scheme: Fe(II)O2 + NO (k(on))--> Fe(III)OONO (h)--> Fe(III) + NO3(-). For most Hb's and Mb's, the first step (indicated by k(on)) is rate limiting, the overall reaction following a bimolecular behavior. By contrast, the rate of isomerization and dissociation of Fe(III)OONO (indicated by h) is rate limiting in NO scavenging by Fe(II)O2 murine neuroglobin, thus the overall reaction follows a monomolecular behavior. Here, we report the characterization of the NO scavenging reaction by Fe(II)O2 truncated Hb GlbO from Mycobacterium leprae. Values of k(on) (=2.1x10(6) M(-1) s(-1)) and h (=3.4 s(-1)) for NO scavenging by Fe(II)O2 M. leprae GlbO have been determined at pH 7.3 and 20.0 degrees C, the rate of Fe(III)OONO decay (h) is rate limiting. The Fe(III)OONO intermediate has been characterized by optical absorption spectroscopy in the Soret region. These results have been analyzed in parallel with those of monomeric and tetrameric globins as well as of flavoHb and discussed with regard to the three-dimensional structure of mycobacterial truncated Hbs and their proposed role in protection from nitrosative stress.


Assuntos
Proteínas de Bactérias/metabolismo , Compostos Férricos/metabolismo , Heme/metabolismo , Hemoglobinas/metabolismo , Mycobacterium leprae/metabolismo , Óxido Nítrico/metabolismo , Ácido Peroxinitroso/metabolismo , Oxirredução , Proteínas Recombinantes/metabolismo , Hemoglobinas Truncadas
3.
IUBMB Life ; 54(3): 95-9, 2002 Sep.
Artigo em Inglês | MEDLINE | ID: mdl-12489635

RESUMO

Leprosy is an old, still dreaded infectious disease caused by the obligate intracellular bacterium Mycobacterium leprae. During the infectious process, M. leprae is faced with the host macrophagic environment, where the oxidative stress and NO release, combined with low pH, low pO2, and high pCO2, contribute to limit the growth of the bacilli. Comparative genomics has unraveled massive gene decay in M. leprae, linking the strictly parasitic lifestyle with the reductive genome evolution. Compared with Mycobacterium tuberculosis and Mycobacterium bovis, the leprosy bacillus has lost most of the genes involved in the detoxification of reactive oxygen and nitrogen species. The very low reactivity of the unique truncated hemoglobin retained by M. leprae could account for the susceptibility of this exceptionally slow-growing microbe to NO.


Assuntos
Mycobacterium leprae/patogenicidade , Óxido Nítrico/fisiologia
4.
Biochem Biophys Res Commun ; 294(5): 1064-70, 2002 Jun 28.
Artigo em Inglês | MEDLINE | ID: mdl-12074585

RESUMO

Truncated hemoglobins (trHb's) form a family of low molecular weight O2 binding hemoproteins distributed in eubacteria, protozoa, and plants. TrHb's branch in a distinct clade within the hemoglobin (Hb) superfamily. A unique globin gene has recently been identified from the complete genome sequence of Mycobacterium leprae that is predicted to encode a trHb (M. leprae trHbO). Sequence comparison and modelling considerations indicate that monomeric M. leprae trHbO has structural features typical of trHb's, such as 20-40 fewer residues than conventional globin chains, Gly-based sequence consensus motifs, likely assembling into a 2-on-2 alpha-helical sandwich fold, and hydrophobic residues recognized to build up the protein matrix ligand diffusion tunnel. The ferrous heme iron atom of deoxygenated M. leprae trHbO appears to be hexacoordinated, like in Arabidopsis thaliana trHbO-3 (A. thaliana trHbO-3). Accordingly, the value of the second-order rate constant for M. leprae trHbO carbonylation (7.3 x 10(3) M(-1) s(-1)) is similar to that observed for A. thaliana trHbO-3 (1.4 x 10(4) M(-1) s(-1)) and turns out to be lower than that reported for carbon monoxide binding to pentacoordinated Mycobacterium tuberculosis trHbN (6.7 x 10(6) M(-1) s(-1)). The lower reactivity of M. leprae trHbO as compared to M. tuberculosis trHbN might be related to the higher susceptibility of the leprosy bacillus to toxic nitrogen and oxygen species produced by phagocytic cells.


Assuntos
Proteínas de Bactérias/genética , Proteínas de Bactérias/metabolismo , Hemoglobinas/genética , Hemoglobinas/metabolismo , Mycobacterium leprae , Sequência de Aminoácidos , Proteínas de Bactérias/química , Sequência de Bases , Clonagem Molecular , Hemoglobinas/química , Ligantes , Modelos Moleculares , Dados de Sequência Molecular , Proteínas Recombinantes/isolamento & purificação , Proteínas Recombinantes/metabolismo , Homologia de Sequência de Aminoácidos , Espectrofotometria , Hemoglobinas Truncadas
5.
s.l; s.n; 2002. 5 p. ilus.
Não convencional em Inglês | SES-SP, HANSEN, HANSENIASE, SESSP-ILSLACERVO, SES-SP | ID: biblio-1240934

RESUMO

Leprosy is an old, still dreaded infectious disease caused by the obligate intracellular bacterium Mycobacterium leprae. During the infectious process, M. leprae is faced with the host macrophagic environment, where the oxidative stress and NO release, combined with low pH, low pO2, and high pCO2, contribute to limit the growth of the bacilli. Comparative genomics has unraveled massive gene decay in M. leprae, linking the strictly parasitic lifestyle with the reductive genome evolution. Compared with Mycobacterium tuberculosis and Mycobacterium bovis, the leprosy bacillus has lost most of the genes involved in the detoxification of reactive oxygen and nitrogen species. The very low reactivity of the unique truncated hemoglobin retained by M. leprae could account for the susceptibility of this exceptionally slow-growing microbe to NO.


Assuntos
Mycobacterium leprae/patogenicidade , Óxido Nítrico/fisiologia
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA