Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 10 de 10
Filtrar
1.
Front Microbiol ; 12: 679894, 2021.
Artigo em Inglês | MEDLINE | ID: mdl-34367085

RESUMO

During a survey of Nothofagus trees and their parasitic fungi in Andean Patagonia (Argentina), genetically distinct strains of Hanseniaspora were obtained from the sugar-containing stromata of parasitic Cyttaria spp. Phylogenetic analyses based on the single-gene sequences (encoding rRNA and actin) or on conserved, single-copy, orthologous genes from genome sequence assemblies revealed that these strains represent a new species closely related to Hanseniaspora valbyensis. Additionally, delimitation of this novel species was supported by genetic distance calculations using overall genome relatedness indices (OGRI) between the novel taxon and its closest relatives. To better understand the mode of speciation in Hanseniaspora, we examined genes that were retained or lost in the novel species in comparison to its closest relatives. These analyses show that, during diversification, this novel species and its closest relatives, H. valbyensis and Hanseniaspora jakobsenii, lost mitochondrial and other genes involved in the generation of precursor metabolites and energy, which could explain their slower growth and higher ethanol yields under aerobic conditions. Similarly, Hanseniaspora mollemarum lost the ability to sporulate, along with genes that are involved in meiosis and mating. Based on these findings, a formal description of the novel yeast species Hanseniaspora smithiae sp. nov. is proposed, with CRUB 1602 H as the holotype.

2.
PLoS Biol ; 17(5): e3000255, 2019 05.
Artigo em Inglês | MEDLINE | ID: mdl-31112549

RESUMO

Cell-cycle checkpoints and DNA repair processes protect organisms from potentially lethal mutational damage. Compared to other budding yeasts in the subphylum Saccharomycotina, we noticed that a lineage in the genus Hanseniaspora exhibited very high evolutionary rates, low Guanine-Cytosine (GC) content, small genome sizes, and lower gene numbers. To better understand Hanseniaspora evolution, we analyzed 25 genomes, including 11 newly sequenced, representing 18/21 known species in the genus. Our phylogenomic analyses identify two Hanseniaspora lineages, a faster-evolving lineage (FEL), which began diversifying approximately 87 million years ago (mya), and a slower-evolving lineage (SEL), which began diversifying approximately 54 mya. Remarkably, both lineages lost genes associated with the cell cycle and genome integrity, but these losses were greater in the FEL. E.g., all species lost the cell-cycle regulator WHIskey 5 (WHI5), and the FEL lost components of the spindle checkpoint pathway (e.g., Mitotic Arrest-Deficient 1 [MAD1], Mitotic Arrest-Deficient 2 [MAD2]) and DNA-damage-checkpoint pathway (e.g., Mitosis Entry Checkpoint 3 [MEC3], RADiation sensitive 9 [RAD9]). Similarly, both lineages lost genes involved in DNA repair pathways, including the DNA glycosylase gene 3-MethylAdenine DNA Glycosylase 1 (MAG1), which is part of the base-excision repair pathway, and the DNA photolyase gene PHotoreactivation Repair deficient 1 (PHR1), which is involved in pyrimidine dimer repair. Strikingly, the FEL lost 33 additional genes, including polymerases (i.e., POLymerase 4 [POL4] and POL32) and telomere-associated genes (e.g., Repressor/activator site binding protein-Interacting Factor 1 [RIF1], Replication Factor A 3 [RFA3], Cell Division Cycle 13 [CDC13], Pbp1p Binding Protein [PBP2]). Echoing these losses, molecular evolutionary analyses reveal that, compared to the SEL, the FEL stem lineage underwent a burst of accelerated evolution, which resulted in greater mutational loads, homopolymer instabilities, and higher fractions of mutations associated with the common endogenously damaged base, 8-oxoguanine. We conclude that Hanseniaspora is an ancient lineage that has diversified and thrived, despite lacking many otherwise highly conserved cell-cycle and genome integrity genes and pathways, and may represent a novel, to our knowledge, system for studying cellular life without them.


Assuntos
Ciclo Celular/genética , Reparo do DNA/genética , Genes Fúngicos , Filogenia , Saccharomycetales/citologia , Saccharomycetales/genética , Sequência de Bases , Dano ao DNA/genética , Evolução Molecular , Fenótipo
3.
PLoS One ; 14(1): e0210792, 2019.
Artigo em Inglês | MEDLINE | ID: mdl-30699175

RESUMO

A novel yeast species was isolated from the sugar-rich stromata of Cyttaria hariotii collected from two different Nothofagus tree species in the Andean forests of Patagonia, Argentina. Phylogenetic analyses of the concatenated sequence of the rRNA gene sequences and the protein-coding genes for actin and translational elongation factor-1α indicated that the novel species belongs to the genus Hanseniaspora. De novo genome assembly of the strain CRUB 1928T yielded a 10.2-Mbp genome assembly predicted to encode 4452 protein-coding genes. The genome sequence data were compared to the genomes of other Hanseniaspora species using three different methods, an alignment-free distance measure, Kr, and two model-based estimations of DNA-DNA homology values, of which all provided indicative values to delineate species of Hanseniaspora. Given its potential role in a rare indigenous alcoholic beverage in which yeasts ferment sugars extracted from the stromata of Cytarria sp., we searched for the genes that may suggest adaptation of novel Hanseniaspora species to fermenting communities. The SSU1-like gene encoding a sulfite efflux pump, which, among Hanseniaspora, is present only in close relatives to the new species, was detected and analyzed, suggesting that this gene might be one factor that characterizes this novel species. We also discuss several candidate genes that likely underlie the physiological traits used for traditional taxonomic identification. Based on these results, a novel yeast species with the name Hanseniaspora gamundiae sp. nov. is proposed with CRUB 1928T (ex-types: ZIM 2545T = NRRL Y-63793T = PYCC 7262T; MycoBank number MB 824091) as the type strain. Furthermore, we propose the transfer of the Kloeckera species, K. hatyaiensis, K. lindneri and K. taiwanica to the genus Hanseniaspora as Hanseniaspora hatyaiensis comb. nov. (MB 828569), Hanseniaspora lindneri comb. nov. (MB 828566) and Hanseniaspora taiwanica comb. nov. (MB 828567).


Assuntos
Bebidas/microbiologia , Hanseniaspora/genética , Argentina , Ascomicetos/isolamento & purificação , DNA Fúngico/genética , Ecossistema , Fagales/microbiologia , Fermentação/genética , Variação Genética , Genoma Fúngico , Genômica , Hanseniaspora/classificação , Hanseniaspora/metabolismo , Filogenia
4.
Folia Microbiol (Praha) ; 61(6): 455-463, 2016 Nov.
Artigo em Inglês | MEDLINE | ID: mdl-27027646

RESUMO

Artisanal white pickled cheese of Western Serbia is a product of complex microbial community which detection by culture-dependent method only is hampered by its limitations. Thus, in the present study, we used a culture-independent, semi-quantitative technique based on construction of an internal transcribed spacer (ITS)-clone library from metagenomic DNA. This approach, based on direct DNA extraction followed by amplification of fungal internal transcribed regions (ITS) cloned into plasmid and restricted by endonucleases, revealed greater species richness in analysed cheeses and their by-products (17 species in total) compared to the more commonly used techniques of the culture-dependent method (8 species) and LSU-DGGE (10 species). The most frequently occurring yeast species which are commonly associated with cheeses production were Debaryomyces hansenii, Kluyveromyces lactis and Candida zeylanoides. On the other hand, Yarrowia lipolytica and Galactomyces geotrichum were detected only in one cheese sample. Moreover, some species, mainly moulds (Filobasidium globisporum, Cladosporium sp., Aspergillus sp. or Alternaria sp.) were identified only by culture-independent methods. The discrepancies between the techniques were confirmed by low correlation factor and by different indices of general biodiversity and dominance of species. The ITS-clone library approach provides the opportunity to analyse complex fungal communities associated with food products.


Assuntos
Biodiversidade , Queijo/microbiologia , Fungos/classificação , Fungos/isolamento & purificação , DNA Fúngico/genética , DNA Espaçador Ribossômico/genética , Fungos/genética , Polimorfismo de Fragmento de Restrição , Sérvia
5.
J Intercult Ethnopharmacol ; 4(1): 12-8, 2015.
Artigo em Inglês | MEDLINE | ID: mdl-26401378

RESUMO

AIM: The aim of this study was to investigate the in vitro probiotic potential of dairy yeast isolates from artisanal cheeses manufactured in Serbia and Croatia. MATERIALS AND METHODS: Twelve yeast strains isolated from artisanal fresh soft and white brined cheeses manufactured in Serbia and Croatia were used in the study. Survival in chemically-simulated gastrointestinal conditions, adherence to epithelial intestinal cells and proliferation of gut-associated lymphoid tissue (GALT) cells were evaluated. RESULTS: The results revealed that two strains of Kluyvereomyces lactis ZIM 2408 and ZIM 2453 grew above one log unit (Δ log CFU/ml) in the complex colonic medium during 24 h of cultivation, while Torulaspora delbrueckii ZIM 2460 was the most resistant isolate in chemically-simulated conditions of gastric juice and upper intestinal tract. It was demonstrated that the strains K. lactis ZIM 2408 and ZIM2441 and Saccharomyces cerevisiae ZIM 2415 were highly adhesive to Caco-2 cells, while strains K. lactis ZIM 2408 and Debaryomyces hansenii ZIM 2415 exhibit the highest adhesion percentage to HT29-MTX cells. All strains significantly (P < 0.0001) decreased the proliferation of GALT cells, suggesting the possible strain-specific immunomodulatory potential of the isolates. CONCLUSION: The dairy yeast isolates exhibit strain-specific probiotic properties, particularly the strain K. lactis ZIM 2408, which appears to be the best probiotic candidate in terms of all three criteria. Taking into account their immunomodulatory potential, the yeast isolates could be further tested for specific probiotic applications and eventually included in functional food formulated for patients suffering from diseases associated with an increased inflammatory status.

6.
Int J Syst Evol Microbiol ; 64(Pt 7): 2364-2369, 2014 Jul.
Artigo em Inglês | MEDLINE | ID: mdl-24763602

RESUMO

Seven apiculate yeast strains that were isolated from the flowers of Syphocampylus corymbiferus Pohl in Brazil are genetically, morphologically and phenotypically distinct from recognized species of the genera Hanseniaspora and Kloeckera. Genetic discontinuities between the novel strains and their closest relatives were found using a networking approach based on the concatenated sequences of the rRNA gene (internal transcribed spacer and D1/D2 of the LSU), and the protein-coding genes for actin and translation elongation factor-1α. Phylogenetic analysis based on the rRNA and the actin gene placed the novel species represented by the strains in close relationship to Hanseniaspora meyeri and Hanseniaspora clermontiae. PCR fingerprinting with microsatellite primers confirmed the genetic heterogeneity of the novel species. The name Hanseniaspora nectarophila sp. nov. is proposed, with UFMG POG a.1(T) ( = ZIM 2311(T)  = CBS 13383(T)) as the type strain; MycoBank no. MB807210. As the current description of the genus does not allow the presence of multilateral budding, an emended diagnosis of the genus Hanseniaspora Zikes is proposed.


Assuntos
Campanulaceae/microbiologia , Flores/microbiologia , Hanseniaspora/classificação , Filogenia , Actinas/genética , Brasil , DNA Fúngico/genética , DNA Espaçador Ribossômico/genética , Genes Fúngicos , Hanseniaspora/genética , Hanseniaspora/isolamento & purificação , Dados de Sequência Molecular , Técnicas de Tipagem Micológica , Fator 1 de Elongação de Peptídeos/genética , Análise de Sequência de DNA
7.
Int J Food Microbiol ; 166(2): 294-300, 2013 Sep 02.
Artigo em Inglês | MEDLINE | ID: mdl-23973841

RESUMO

The goal of this study was the characterisation of indigenous lactic acid bacteria (LAB) and yeasts isolated from nine white pickled (BG) and nine fresh soft (ZG) artisanal cheeses collected in Serbia and Croatia. While LAB were present in all of the cheeses collected, yeasts were found in all BG cheeses but only in three ZG cheese samples. High LAB and yeast species diversity was determined (average H'(L)=0.4 and H'(Y)=0.8, respectively). The predominant LAB species in white pickled (BG) cheeses were Lactococcus lactis, Lactobacillus plantarum, and Leuconostoc mesenteroides, while in fresh soft (ZG) cheeses the most dominant LAB species were L. lactis, Enterococcus faecalis, and Leuconostoc pseudomesenteroides. Among the 20 yeast species found, Debaryomyces hansenii, Candida zeylanoides, and Torulaspora delbrueckii were found to be predominant in BG cheeses, while Yarrowia lipolytica was predominant in ZG cheeses. The characterisation of metabolic and technological potentials revealed that 53.4% of LAB isolates produced antimicrobial compounds, 44.3% of LAB strains showed proteolytic activity, while most of the yeast species possessed either lipolytic or proteolytic activity. In conclusion, the results obtained in this study showed that the composition of LAB and yeast populations in white pickled and fresh soft cheeses is region specific. The knowledge gained in this study could eventually be used to select region specific LAB and yeast strains for the production of white pickled and fresh soft artisanal cheeses with geographically specific origins under controlled conditions.


Assuntos
Biodiversidade , Queijo/microbiologia , Microbiologia de Alimentos , Lactobacillaceae/fisiologia , Leveduras/fisiologia , Carga Bacteriana , Análise por Conglomerados , Contagem de Colônia Microbiana , Croácia , DNA Espaçador Ribossômico/genética , Lactobacillaceae/classificação , Lactobacillaceae/genética , Dados de Sequência Molecular , RNA Ribossômico 16S/genética , Sérvia , Leveduras/classificação , Leveduras/genética
8.
Int J Syst Evol Microbiol ; 56(Pt 5): 1157-1165, 2006 May.
Artigo em Inglês | MEDLINE | ID: mdl-16627671

RESUMO

Two protein-coding genes, actin and translation elongation factor-1alpha (EF-1alpha), as well as two ribosomal gene regions, D1/D2 domains of the large subunit and both internal transcribed spacers including the 5.8S gene region, were evaluated regarding their usefulness for reconstruction of phylogenetic relationships in the Hanseniaspora-Kloeckera species group. This included analyses of sequence divergence values, heterogeneity of evolutionary rates and the reliability of the inferred trees. Both protein-coding genes showed greater capacities to resolve at the strain level and between the closely related species of Hanseniaspora-Kloeckera, compared with the ribosomal gene regions. However, to obtain a fully resolved and reliable phylogenetic tree that reflected the biological relationships it was necessary to combine three congruent sequence datasets. The novel species Hanseniaspora pseudoguilliermondii sp. nov. (type strain CBS 8772T) is described as a result of the application of various molecular approaches to delimit species. Furthermore, incongruent gene genealogies of genetically divergent strains of Hanseniaspora occidentalis, as determined by amplified fragment length polymorphism analysis and DNA-DNA reassociation measurements, indicated the presence of two novel varieties, H. occidentalis var. occidentalis (type strain CBS 2592T) and H. occidentalis var. citrica var. nov. (type strain CBS 6783T), which could be distinguished by habitat preference.


Assuntos
Saccharomycetales/classificação , Actinas/genética , Impressões Digitais de DNA , DNA Fúngico/química , DNA Fúngico/isolamento & purificação , DNA Ribossômico/química , DNA Ribossômico/isolamento & purificação , DNA Espaçador Ribossômico/genética , Proteínas Fúngicas/genética , Genes de RNAr , Dados de Sequência Molecular , Hibridização de Ácido Nucleico , Fator 1 de Elongação de Peptídeos/genética , Filogenia , Polimorfismo de Fragmento de Restrição , RNA Fúngico/genética , RNA Ribossômico/genética , RNA Ribossômico 5,8S/genética , Saccharomycetales/genética , Análise de Sequência de DNA
9.
Int J Syst Evol Microbiol ; 53(Pt 5): 1671-1680, 2003 Sep.
Artigo em Inglês | MEDLINE | ID: mdl-13130067

RESUMO

Fourteen apiculate yeast strains isolated from various sources in South Africa, North America and the Hawaiian islands were found to be genetically divergent from other Hanseniaspora-Kloeckera species by using randomly amplified polymorphic DNA (RAPD)-PCR. After cluster analysis of the RAPD-PCR fingerprints, five groups were recognized. DNA reassociation values among representatives of these groups and strains of Hanseniaspora-Kloeckera species revealed that the strains represent five novel species. Four are described here as novel species of HANSENIASPORA: Hanseniaspora meyeri sp. nov. (type CBS 8734(T)), Hanseniaspora clermontiae sp. nov. (type CBS 8821(T)), Hanseniaspora lachancei sp. nov. (type CBS 8818(T)) and Hanseniaspora opuntiae sp. nov. (type CBS 8733(T)). The fifth novel species, which is represented by only a single strain, CBS 8772, is not introduced as a new taxon. Phylogenetic analyses of the D1/D2 region of the 26S rDNA and internal transcribed spacer (ITS) regions with 5.8S rDNA sequences placed H. meyeri, H. clermontiae, H. lachancei, H. opuntiae and strain CBS 8772 close to Hanseniaspora uvarum and Hanseniaspora guilliermondii. The key characteristics for standard physiological identification of H. clermontiae and H. lachancei were respectively maximal growth temperature and assimilation of 2-keto-D-gluconate. However, physiological characteristics did not allow the distinction of H. opuntiae and strain CBS 8772 from H. guilliermondii or H. meyeri from H. uvarum. These three novel taxa can be identified by either ITS sequencing or PCR-RFLP of ITS regions using restriction enzymes MboII and HinfI.


Assuntos
Saccharomycetales/classificação , Composição de Bases , DNA Fúngico/química , DNA Fúngico/genética , DNA Ribossômico/genética , Variação Genética , Havaí , Dados de Sequência Molecular , América do Norte , Fenótipo , Filogenia , Saccharomycetales/genética , Saccharomycetales/isolamento & purificação , Saccharomycetales/metabolismo , África do Sul
10.
FEMS Yeast Res ; 1(4): 279-89, 2002 Jan.
Artigo em Inglês | MEDLINE | ID: mdl-12702331

RESUMO

Three molecular methods, RAPD-PCR analysis, electrophoretic karyotyping and RFLP of the PCR-amplified ITS regions (ITS1, ITS2 and the intervening 5.8S rDNA), were studied for accurate identification of Hanseniaspora and Kloeckera species as well as for determining inter- and intraspecific relationships of 74 strains isolated from different sources and/or geographically distinct regions. Of these three methods, PCR-RFLP analysis of ITS regions with restriction enzymes DdeI and HinfI is proposed as a rapid identification method to discriminate unambiguously between all six Hanseniaspora species and the single non-ascospore-forming apiculate yeast species Kloeckera lindneri. Electrophoretic karyotyping produced chromosomal profiles by which the seven species could be divided into four groups sharing similar karyotypes. Although most of the 60 strains examined exhibited a common species-specific pattern, a different degree of chromosomal-length polymorphism and a variable number of chromosomal DNA fragments were observed within species. Cluster analysis of the combined RAPD-PCR fingerprints obtained with one 10-mer primer, two microsatellite primers and one minisatellite primer generated clusters which with a few exceptions are in agreement with the groups as earlier recognized in DNA-DNA homology studies.


Assuntos
Ascomicetos/classificação , Variação Genética , Saccharomycetales/classificação , Animais , Ascomicetos/genética , DNA Fúngico/análise , DNA Ribossômico/análise , Desoxirribonucleases de Sítio Específico do Tipo II/metabolismo , Eletroforese em Gel de Campo Pulsado , Humanos , Cariotipagem , Técnicas de Tipagem Micológica , Polimorfismo de Fragmento de Restrição , Técnica de Amplificação ao Acaso de DNA Polimórfico , Saccharomycetales/genética , Especificidade da Espécie
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA