Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 2 de 2
Filtrar
Mais filtros


Bases de dados
Ano de publicação
Tipo de documento
Intervalo de ano de publicação
1.
Chem Res Toxicol ; 30(8): 1622-1628, 2017 08 21.
Artigo em Inglês | MEDLINE | ID: mdl-28745489

RESUMO

Thalidomide [α-(N-phthalimido)glutarimide] (1) is a sedative and antiemetic drug originally introduced into the clinic in the 1950s for the treatment of morning sickness. Although marketed as entirely safe, more than 10 000 babies were born with severe birth defects. Thalidomide was banned and subsequently approved for the treatment of multiple myeloma and complications associated with leprosy. Although known for more than 5 decades, the mechanism of teratogenicity remains to be conclusively understood. Various theories have been proposed in the literature including DNA damage and ROS and inhibition of angiogenesis and cereblon. All of the theories have their merits and limitations. Although the recently proposed cereblon theory has gained wide acceptance, it fails to explain the metabolism and low-dose requirement reported by a number of groups. Recently, we have provided convincing structural evidence in support of the presence of arene oxide and the quinone-reactive intermediates. However, the ability of these reactive intermediates to impart toxicity/teratogenicity needs investigation. Herein we report that the oxidative metabolite of thalidomide, dihydroxythalidomide, is responsible for generating ROS and causing DNA damage. We show, using cell lines, the formation of comet (DNA damage) and ROS. Using DNA-cleavage assays, we also show that catalase, radical scavengers, and desferal are capable of inhibiting DNA damage. A mechanism of teratogenicity is proposed that not only explains the DNA-damaging property but also the metabolism, low concentration, and species-specificity requirements of thalidomide.


Assuntos
Dano ao DNA/efeitos dos fármacos , Talidomida/toxicidade , Catalase/metabolismo , Clivagem do DNA , Sequestradores de Radicais Livres/química , Células HEK293 , Células Hep G2 , Células Endoteliais da Veia Umbilical Humana , Humanos , Microscopia de Fluorescência , Plasmídeos/metabolismo , Poli(ADP-Ribose) Polimerases/metabolismo , Espécies Reativas de Oxigênio/análise , Espécies Reativas de Oxigênio/metabolismo , Teratogênicos/química , Teratogênicos/metabolismo , Teratogênicos/toxicidade , Talidomida/química , Talidomida/metabolismo
2.
Chem Res Toxicol ; 27(1): 147-56, 2014 Jan 21.
Artigo em Inglês | MEDLINE | ID: mdl-24350712

RESUMO

The sedative and antiemetic drug thalidomide [α-(N-phthalimido)glutarimide] was withdrawn in the early 1960s because of its potent teratogenic effects but was approved for the treatment of lesions associated with leprosy in 1998 and multiple myeloma in 2006. The mechanism of teratogenicity of thalidomide still remains unclear, but it is well-established that metabolism of thalidomide is important for both teratogenicity and cancer treatment outcome. Thalidomide is oxidized by various cytochrome P450 (P450) enzymes, the major one being P450 2C19, to 5-hydroxy-, 5'-hydroxy-, and dihydroxythalidomide. We previously reported that P450 3A4 oxidizes thalidomide to the 5-hydroxy and dihydroxy metabolites, with the second oxidation step involving a reactive intermediate, possibly an arene oxide, that can be trapped by glutathione (GSH) to GSH adducts. We now show that the dihydroxythalidomide metabolite can be further oxidized to a quinone intermediate. Human P450s 2J2, 2C18, and 4A11 were also found to oxidize 5-hydroxythalidomide to dihydroxy products. Unlike P450s 2C19 and 3A4, neither P450 2J2, 2C18, nor 4A11 oxidized thalidomide itself. A recently approved amino analogue of thalidomide, pomalidomide (CC-4047, Actimid), was also oxidized by human liver microsomes and P450s 2C19, 3A4, and 2J2 to the corresponding phthalimide ring-hydroxylated product.


Assuntos
Sistema Enzimático do Citocromo P-450/metabolismo , Talidomida/análogos & derivados , Humanos , Cinética , Estrutura Molecular , Oxirredução , Talidomida/química , Talidomida/metabolismo
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA