Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 3 de 3
Filtrar
Mais filtros


Bases de dados
Tipo de documento
Intervalo de ano de publicação
1.
Clin Infect Dis ; 66(suppl_4): S281-S285, 2018 06 01.
Artigo em Inglês | MEDLINE | ID: mdl-29860289

RESUMO

Recent mathematical and statistical modeling of leprosy incidence data provides estimates of the current undiagnosed population and projections of diagnosed cases, as well as ongoing transmission. Furthermore, modeling studies have been used to evaluate the effectiveness of proposed intervention strategies, such as postleprosy exposure prophylaxis and novel diagnostics, relative to current approaches. Such modeling studies have revealed both a slow decline of new cases and a substantial pool of undiagnosed infections. These findings highlight the need for active case detection, particularly targeting leprosy foci, as well as for continued research into innovative accurate, rapid, and cost-effective diagnostics. As leprosy incidence continues to decline, targeted active case detection primarily in foci and connected areas will likely become increasingly important.


Assuntos
Erradicação de Doenças , Hanseníase/diagnóstico , Modelos Estatísticos , Modelos Teóricos , Humanos , Incidência , Hanseníase/epidemiologia , Hanseníase/prevenção & controle , Hanseníase/transmissão , Políticas
2.
Epidemics ; 18: 92-100, 2017 03.
Artigo em Inglês | MEDLINE | ID: mdl-28279460

RESUMO

BACKGROUND: Brazil has the second highest annual number of new leprosy cases. The aim of this study is to formally compare predictions of future new case detection rate (NCDR) trends and the annual probability of NCDR falling below 10/100,000 of four different modelling approaches in four states of Brazil: Rio Grande do Norte, Amazonas, Ceará, Tocantins. METHODS: A linear mixed model, a back-calculation approach, a deterministic compartmental model and an individual-based model were used. All models were fitted to leprosy data obtained from the Brazilian national database (SINAN). First, models were fitted to the data up to 2011, and predictions were made for NCDR for 2012-2014. Second, data up to 2014 were considered and forecasts of NCDR were generated for each year from 2015 to 2040. The resulting distributions of NCDR and the probability of NCDR being below 10/100,000 of the population for each year were then compared between approaches. RESULTS: Each model performed well in model fitting and the short-term forecasting of future NCDR. Long-term forecasting of NCDR and the probability of NCDR falling below 10/100,000 differed between models. All agree that the trend of NCDR will continue to decrease in all states until 2040. Reaching a NCDR of less than 10/100,000 by 2020 was only likely in Rio Grande do Norte. Prediction until 2040 showed that the target was also achieved in Amazonas, while in Ceará and Tocantins the NCDR most likely remain (far) above 10/100,000. CONCLUSIONS: All models agree that, while incidence is likely to decline, achieving a NCDR below 10/100,000 by 2020 is unlikely in some states. Long-term prediction showed a downward trend with more variation between models, but highlights the need for further control measures to reduce the incidence of new infections if leprosy is to be eliminated.


Assuntos
Hanseníase/diagnóstico , Hanseníase/epidemiologia , Modelos Estatísticos , Brasil/epidemiologia , Previsões , Humanos , Incidência
3.
Parasit Vectors ; 8: 534, 2015 Oct 22.
Artigo em Inglês | MEDLINE | ID: mdl-26490744

RESUMO

BACKGROUND: The number of new leprosy cases reported annually is falling worldwide, but remains relatively high in some populations. Because of the long and variable periods between infection, onset of disease, and diagnosis, the recently detected cases are a reflection of infection many years earlier. Estimation of the numbers of sub-clinical and clinical infections would be useful for management of elimination programmes. Back-calculation is a methodology that could provide estimates of prevalence of undiagnosed infections, future diagnoses and the effectiveness of control. METHODS: A basic back-calculation model to investigate the infection dynamics of leprosy has been developed using Markov Chain Monte Carlo in a Bayesian context. The incidence of infection and the detection delay both vary with calendar time. Public data from Thailand are used to demonstrate the results that are obtained as the incidence of diagnosed cases falls. RESULTS: The results show that the underlying burden of infection and short-term future predictions of cases can be estimated with a simple model. The downward trend in new leprosy cases in Thailand is expected to continue. In 2015 the predicted total number of undiagnosed sub-clinical and clinical infections is 1,168 (846-1,546) of which 466 (381-563) are expected to be clinical infections. CONCLUSIONS: Bayesian back-calculation has great potential to provide estimates of numbers of individuals in health/infection states that are as yet unobserved. Predictions of future cases provides a quantitative measure of understanding for programme managers and evaluators. We will continue to develop the approach, and suggest that it might be useful for other NTD in which incidence of diagnosis is not an immediate measure of infection.


Assuntos
Hanseníase/epidemiologia , Teorema de Bayes , Humanos , Incidência , Modelos Teóricos , Prevalência , Tailândia
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA