Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 2 de 2
Filtrar
Mais filtros


Bases de dados
Ano de publicação
Tipo de documento
Intervalo de ano de publicação
1.
Chem Sci ; 6(5): 3161-3172, 2015 May 01.
Artigo em Inglês | MEDLINE | ID: mdl-28706688

RESUMO

The cell wall of pathogenic mycobacteria is abundant with virulence factors, among which phenolic glycolipids (PGLs) are prominent examples. Mycobacterium kansasii, an important opportunistic pathogen, produces seven PGLs and their effect on the release of important proinflammatory cytokines that mediate disease progression has not been investigated. We previously showed that proinflammatory cytokines are modulated by PGLs from M. tuberculosis, M. leprae and M. bovis. In this paper we describe the synthesis of a series of 17 analogs of M. kansasii PGLs containing a truncated aglycone. Subsequently, the effect of these compounds on the release of proinflammatory cytokines (TNF-α, IL-6, IL-1ß, MCP-1) and nitric oxide (NO) was evaluated. These compounds exerted an immunoinhibitory effect on the release of the tested cytokines. The concentration-dependent inhibitory profile of the tested molecules was also found to be dependent on the methylation pattern of the molecule and was mediated via toll-like receptor (TLR)-2. This study led to the discovery of a glycolipid (18) that shows promising potent anti-inflammatory properties making it a potential candidate for further optimization of its anti-inflammatory profile.

2.
Chembiochem ; 14(16): 2153-9, 2013 Nov 04.
Artigo em Inglês | MEDLINE | ID: mdl-24115598

RESUMO

Phenolic glycolipids (PGLs) are virulence factors present in the cell walls of many pathogenic mycobacteria. PGLs have been implicated in various aspects of mycobacterial disease, but there are limited structure-activity data available for these molecules. We report here the preparation of seven synthetic PGL analogues, differing from the native compounds in the replacement of the complex phenolic lipid moiety with a p-methoxyphenyl group. The ability of these compounds to stimulate or inhibit the production of cytokines (TNF-α, IL-1ß, IL-6, MCP-1) and nitric oxide (NO) was then evaluated by ELISA-based assays. None of the compounds stimulated the production of these biological signalling molecules. In contrast, they each displayed concentration-dependent inhibitory activity, related to the methylation pattern of the molecule and mediated by Toll-like receptor 2. Additional studies revealed that native PGL-I from Mycobacterium leprae and a synthetic PGL-I analogue containing a simplified lipid domain had enhanced inhibitory activities relative to the corresponding analogues containing the p-methoxyphenyl aglycone; however, the natural lipid phenolthiocerol was only weakly active. These studies reveal that synthetic molecules of this type can be used as probes for PGL function. Moreover, their ease of synthesis relative to the natural glycolipids, as well as their more favourable aqueous solubility, should allow for more thorough structure-activity relationship studies.


Assuntos
Citocinas/metabolismo , Glicolipídeos/química , Glicolipídeos/farmacologia , Macrófagos/efeitos dos fármacos , Mycobacterium/metabolismo , Receptor 2 Toll-Like/metabolismo , Anti-Inflamatórios/síntese química , Anti-Inflamatórios/química , Anti-Inflamatórios/farmacologia , Linhagem Celular , Glicolipídeos/síntese química , Humanos , Macrófagos/citologia , Macrófagos/metabolismo , Óxido Nítrico/metabolismo , Fenóis/química , Relação Estrutura-Atividade
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA