Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 3 de 3
Filtrar
Mais filtros


Ano de publicação
Tipo de documento
Intervalo de ano de publicação
1.
s.l; s.n; 2021. 8 p. tab.
Não convencional em Inglês | SES-SP, CONASS, HANSEN, HANSENIASE, SESSP-ILSLACERVO, SES-SP | ID: biblio-1146789

RESUMO

Despite intense efforts, the number of new cases of leprosy has remained significantly high over the past 20 years. Host genetic background is strongly linked to the pathogenesis of this disease, which is caused by Mycobacterium leprae (M. leprae), and there is a consensus that the most significant genetic association with leprosy is attributed to the major histocompatibility complex (MHC). Here, we investigated the association of human leukocyte antigen (HLA) class I and II genes with leprosy in a Brazilian population encompassing 826 individuals from a hyperendemic area of Brazil; HLA typing of class I (-A, -B, -C) and class II (-DRB1, -DQA1, -DQB1, -DPA1, and -DPB1) loci was conducted. Initially, the associations were tested using the chi-square test, with p-values adjusted using the false discovery rate (FDR) method. Next, statistically significant signals of the associations were submitted to logistic regression analyses to adjust for sex and molecular ancestry data. The results showed that HLA-C*08, -DPB1*04, and -DPB1*18 were associated with protective effects, while HLA-C*12 and -DPB1*105 were associated with susceptibility to leprosy. Thus, our findings reveal new associations between leprosy and the HLA-DPB1 locus and confirm previous associations between the HLA-C locus and leprosy(AU).


Assuntos
Predisposição Genética para Doença , Hanseníase/genética , Mycobacterium leprae/patogenicidade , Antígenos HLA-C , Alelos , Complexo Principal de Histocompatibilidade
2.
s.l; s.n; 2021. 12 p. ilus, tab, graf.
Não convencional em Inglês | SES-SP, HANSEN, CONASS, HANSENIASE, SESSP-ILSLPROD, SES-SP, SESSP-ILSLACERVO, SES-SP | ID: biblio-1284237

RESUMO

Leprosy is a disease with a clinical spectrum of presentations that is also manifested in diverse histological features. At one pole, lepromatous lesions (L-pole) have phagocytic foamy macrophages heavily parasitized with freely multiplying intracellular Mycobacterium leprae. At the other pole, the presence of epithelioid giant cells and granulomatous formation in tuberculoid lesions (T-pole) lead to the control of M. leprae replication and the containment of its spread. The mechanism that triggers this polarization is unknown, but macrophages are central in this process. Over the past few years, leprosy has been studied using large scale techniques to shed light on the basic pathways that, upon infection, rewire the host cellular metabolism and gene expression. M. leprae is particularly peculiar as it invades Schwann cells in the nerves, reprogramming their gene expression leading to a stem-like cell phenotype. This modulatory behavior exerted by M. leprae is also observed in skin macrophages. Here, we used live M. leprae to infect (10:1 multiplicity of infection) monocyte-derived macrophages (MDMs) for 48 h and analyzed the whole gene expression profile using microarrays. In this model, we observe an intense upregulation of genes consistent with a cellular immune response, with enriched pathways including peptide and protein secretion, leukocyte activation, inflammation, and cellular divalent inorganic cation homeostasis. Among the most differentially expressed genes (DEGs) are CCL5/RANTES and CYP27B1, and several members of the metallothionein and metalloproteinase families. This is consistent with a proinflammatory state that would resemble macrophage rewiring toward granulomatous formation observed at the T-pole. Furthermore, a comparison with a dataset retrieved from the Gene Expression Omnibus of M. leprae-infected Schwann cells (MOI 100:1) showed that the patterns among the DEGs are highly distinct, as the Schwann cells under these conditions had a scavenging and phagocytic gene profile similar to M2-like macrophages, with enriched pathways rearrangements in the cytoskeleton, lipid and cholesterol metabolism and upregulated genes including MVK, MSMO1, and LACC1/FAMIN. In summary, macrophages may have a central role in defining the paradigmatic cellular (T-pole) vs. humoral (L-pole) responses and it is likely that the multiplicity of infection and genetic polymorphisms in key genes are gearing this polarization.


Assuntos
Humanos , Masculino , Feminino , Adulto , Adulto Jovem , Hanseníase Virchowiana/genética , Hanseníase Virchowiana/imunologia , Imunidade Celular/genética , Macrófagos/imunologia , Macrófagos/virologia , Mycobacterium leprae/imunologia , Células de Schwann/imunologia , Polaridade Celular/genética , Polimorfismo de Nucleotídeo Único , Transcriptoma
3.
s.l; s.n; 2019. 10 p.
Não convencional em Inglês | CONASS, SES-SP, HANSEN, HANSENIASE, SESSP-ILSLPROD, SES-SP, SESSP-ILSLACERVO, SES-SP | ID: biblio-1147177

RESUMO

Schwann cells (SCs) critically maintain the plasticity of the peripheral nervous system. Peripheral nerve injuries and infections stimulate SCs in order to retrieve homeostasis in neural tissues. Previous studies indicate that Mycobacterium leprae (ML) regulates the expression of key factors related to SC identity, suggesting that alterations in cell phenotype may be involved in the pathogenesis of neural damage in leprosy. To better understand whether ML restricts the plasticity of peripheral nerves, the present study sought to determine the expression of Krox­20, Sox­10, c­Jun and p75NTR in SC culture and mice sciatic nerves, both infected by ML Thai­53 strain. Primary SC cultures were stimulated with two different multiplicities of infection (MOI 100:1; MOI 50:1) and assessed after 7 and 14 days. Sciatic nerves of nude mice (NU­Foxn1nu) infected with ML were evaluated after 6 and 9 months. In vitro results demonstrate downregulation of Krox­20 and Sox­10 along with the increase in p75NTR­immunolabelled cells. Concurrently, sciatic nerves of infected mice showed a significant decrease in Krox­20 and increase in p75NTR. Our results corroborate previous findings on the interference of ML in the expression of factors involved in cell maturation, favouring the maintenance of a non­myelinating phenotype in SCs, with possible implications for the repair of adult peripheral nerves(AU).


Assuntos
Animais , Camundongos , Células de Schwann/microbiologia , Hanseníase/metabolismo , Hanseníase/microbiologia , Mycobacterium leprae/isolamento & purificação , Nervos Periféricos/microbiologia , Células de Schwann/metabolismo , Técnicas In Vitro , Regulação para Baixo , Receptores de Fator de Crescimento Neural/fisiologia , Proteína 2 de Resposta de Crescimento Precoce/biossíntese , Plasticidade Neuronal/fisiologia
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA