Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 3 de 3
Filtrar
1.
PLoS Negl Trop Dis ; 13(6): e0007400, 2019 06.
Artigo em Inglês | MEDLINE | ID: mdl-31181059

RESUMO

BACKGROUND: Early detection of Mycobacterium leprae is a key strategy for disrupting the transmission chain of leprosy and preventing the potential onset of physical disabilities. Clinical diagnosis is essential, but some of the presented symptoms may go unnoticed, even by specialists. In areas of greater endemicity, serological and molecular tests have been performed and analyzed separately for the follow-up of household contacts, who are at high risk of developing the disease. The accuracy of these tests is still debated, and it is necessary to make them more reliable, especially for the identification of cases of leprosy between contacts. We proposed an integrated analysis of molecular and serological methods using artificial intelligence by the random forest (RF) algorithm to better diagnose and predict new cases of leprosy. METHODS: The study was developed in Governador Valadares, Brazil, a hyperendemic region for leprosy. A longitudinal study was performed, including new cases diagnosed in 2011 and their respective household contacts, who were followed in 2011, 2012, and 2016. All contacts were diligently evaluated by clinicians from Reference Center for Endemic Diseases (CREDEN-PES) before being classified as asymptomatic. Samples of slit skin smears (SSS) from the earlobe of the patients and household contacts were collected for quantitative polymerase chain reaction (qPCR) of 16S rRNA, and peripheral blood samples were collected for ELISA assays to detect LID-1 and ND-O-LID. RESULTS: The statistical analysis of the tests revealed sensitivity for anti-LID-1 (63.2%), anti-ND-O-LID (57.9%), qPCR SSS (36.8%), and smear microscopy (30.2%). However, the use of RF allowed for an expressive increase in sensitivity in the diagnosis of multibacillary leprosy (90.5%) and especially paucibacillary leprosy (70.6%). It is important to report that the specificity was 92.5%. CONCLUSION: The proposed model using RF allows for the diagnosis of leprosy with high sensitivity and specificity and the early identification of new cases among household contacts.


Assuntos
Ensaio de Imunoadsorção Enzimática/métodos , Características da Família , Saúde da Família , Hanseníase/diagnóstico , Mycobacterium leprae/genética , Mycobacterium leprae/imunologia , Reação em Cadeia da Polimerase em Tempo Real/métodos , Adolescente , Adulto , Idoso , Idoso de 80 Anos ou mais , Anticorpos Antibacterianos/sangue , Inteligência Artificial , Brasil , Criança , Pré-Escolar , DNA Bacteriano/química , DNA Bacteriano/genética , DNA Ribossômico/química , DNA Ribossômico/genética , Feminino , Humanos , Estudos Longitudinais , Masculino , Pessoa de Meia-Idade , Técnicas de Diagnóstico Molecular/métodos , RNA Ribossômico 16S/genética , Sensibilidade e Especificidade , Testes Sorológicos/métodos , Adulto Jovem
2.
BMC Infect Dis ; 18(1): 153, 2018 04 02.
Artigo em Inglês | MEDLINE | ID: mdl-29609530

RESUMO

BACKGROUND: Characterization of the Mycobacterium leprae genome has made possible the development of Polymerase Chain Reaction (PCR) systems that can amplify different genomic regions. Increased reliability and technical efficiency of quantitative PCR (qPCR) makes it a promising tool for early diagnosis of leprosy. Index cases that are multibacillary spread the bacillus silently, even before they are clinically diagnosed. Early detection and treatment could prevent transmission in endemic areas. METHODS: In this study, the qPCR technique is used to detect DNA of M. leprae in samples of slit skin smears (SSS) of the ear lobe and blood of leprosy patients and their asymptomatic household contacts residing in Governador Valadares, MG, Brazil, a hyperendemic area for leprosy. A total of 164 subjects participated in the study: 43 index cases, 113 household contacts, and, as negative controls, 8 individuals who reported no contact with patients nor history of leprosy in the family. The qPCR was performed to amplify 16S rRNA fragments and was specifically designed for M. leprae. RESULTS: Of asymptomatic household contacts, 23.89% showed bacillary DNA by qPCR in samples of SSS and blood. Also, 48.84% of patients diagnosed with leprosy were positive for qPCR while the bacillary load was positive in only 30.23% of patients. It is important to note that most patients were already receiving treatment when the collection of biological material for qPCR was performed. The level of bacillary DNA from household contacts was similar to the DNA levels detected in the group of paucibacillary patients. CONCLUSION: Considering that household contacts comprise a recognizable group of individuals with a high risk of disease, as they live in close proximity to a source of infection, qPCR can be used to estimate the risk of progress towards leprosy among household contacts and as a routine screening method for a chemoprophylactic protocol.


Assuntos
Infecções Assintomáticas/epidemiologia , DNA Bacteriano/isolamento & purificação , Características da Família , Hanseníase/epidemiologia , Mycobacterium leprae/genética , Adulto , Brasil/epidemiologia , Busca de Comunicante/métodos , Feminino , Humanos , Hanseníase/diagnóstico , Hanseníase/transmissão , Masculino , Mycobacterium leprae/isolamento & purificação , Prevalência , RNA Ribossômico 16S/análise , Reação em Cadeia da Polimerase em Tempo Real , Reprodutibilidade dos Testes
3.
FEMS Yeast Res ; 5(8): 693-701, 2005 May.
Artigo em Inglês | MEDLINE | ID: mdl-15943004

RESUMO

The yeast Debaryomyces hansenii is usually found in salty environments such as the sea and salted food. It is capable of accumulating sodium without being intoxicated even when potassium is present at low concentration in the environment. In addition, sodium improves growth and protects D. hansenii in the presence of additional stress factors such as high temperature and extreme pH. An array of advantageous factors, as compared with Saccharomyces cerevisiae, is putatively involved in the increased halotolerance of D. hansenii: glycerol, the main compatible solute, is kept inside the cell by an active glycerol-Na+ symporter; potassium uptake is not inhibited by sodium; sodium protein targets in D. hansenii seem to be more resistant. The whole genome of D. hansenii has been sequenced and is now available at http://cbi.labri.fr/Genolevures/ and, so far, no genes specifically responsible for the halotolerant behaviour of D. hansenii have been found.


Assuntos
Ascomicetos/fisiologia , Ascomicetos/genética , Ascomicetos/metabolismo , Transporte Biológico , Cátions Monovalentes , Glicerol/metabolismo , Temperatura Alta , Concentração de Íons de Hidrogênio , Transporte de Íons , Potássio/metabolismo , Cloreto de Sódio/metabolismo
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA