Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 5 de 5
Filtrar
1.
Biomolecules ; 13(5)2023 04 26.
Artigo em Inglês | MEDLINE | ID: mdl-37238617

RESUMO

The immunomodulatory imide drug (IMiD) class, which includes the founding drug member thalidomide and later generation drugs, lenalidomide and pomalidomide, has dramatically improved the clinical treatment of specific cancers, such as multiple myeloma, and it combines potent anticancer and anti-inflammatory actions. These actions, in large part, are mediated by IMiD binding to the human protein cereblon that forms a critical component of the E3 ubiquitin ligase complex. This complex ubiquitinates and thereby regulates the levels of multiple endogenous proteins. However, IMiD-cereblon binding modifies cereblon's normal targeted protein degradation towards a new set of neosubstrates that underlies the favorable pharmacological action of classical IMiDs, but also their adverse actions-in particular, their teratogenicity. The ability of classical IMiDs to reduce the synthesis of key proinflammatory cytokines, especially TNF-α levels, makes them potentially valuable to reposition as drugs to mitigate inflammatory-associated conditions and, particularly, neurological disorders driven by an excessive neuroinflammatory element, as occurs in traumatic brain injury, Alzheimer's and Parkinson's diseases, and ischemic stroke. The teratogenic and anticancer actions of classical IMiDs are substantial liabilities for effective drugs in these disorders and can theoretically be dialed out of the drug class. We review a select series of novel IMiDs designed to avoid binding with human cereblon and/or evade degradation of downstream neosubstrates considered to underpin the adverse actions of thalidomide-like drugs. These novel non-classical IMiDs hold potential as new medications for erythema nodosum leprosum (ENL), a painful inflammatory skin condition associated with Hansen's disease for which thalidomide remains widely used, and, in particular, as a new treatment strategy for neurodegenerative disorders in which neuroinflammation is a key component.


Assuntos
Mieloma Múltiplo , Doenças Neurodegenerativas , Humanos , Talidomida/farmacologia , Talidomida/uso terapêutico , Agentes de Imunomodulação , Doenças Neuroinflamatórias , Mieloma Múltiplo/tratamento farmacológico , Ubiquitina-Proteína Ligases/metabolismo , Doenças Neurodegenerativas/tratamento farmacológico
2.
Oncotarget ; 7(22): 33237-45, 2016 May 31.
Artigo em Inglês | MEDLINE | ID: mdl-27120781

RESUMO

Thalidomide, a drug known for its teratogenic side-effects, is used successfully to treat a variety of clinical conditions including leprosy and multiple myeloma. Intense efforts are underway to synthesize and identify safer, clinically relevant analogs. Here, we conduct a preliminary in vivo screen of a library of new thalidomide analogs to determine which agents demonstrate activity, and describe a cohort of compounds with anti-angiogenic properties, anti-inflammatory properties and some compounds which exhibited both. The combination of the in vivo zebrafish and chicken embryo model systems allows for the accelerated discovery of new, potential therapies for cancerous and inflammatory conditions.


Assuntos
Inibidores da Angiogênese/farmacologia , Anti-Inflamatórios/farmacologia , Embrião de Galinha/efeitos dos fármacos , Descoberta de Drogas/métodos , Ensaios de Triagem em Larga Escala , Talidomida/farmacologia , Peixe-Zebra/embriologia , Anormalidades Induzidas por Medicamentos/etiologia , Inibidores da Angiogênese/toxicidade , Animais , Animais Geneticamente Modificados , Anti-Inflamatórios/toxicidade , Relação Dose-Resposta a Droga , Proteínas de Fluorescência Verde/biossíntese , Proteínas de Fluorescência Verde/genética , Neovascularização Fisiológica/efeitos dos fármacos , Infiltração de Neutrófilos/efeitos dos fármacos , Medição de Risco , Talidomida/análogos & derivados , Talidomida/toxicidade , Fluxo de Trabalho , Peixe-Zebra/genética , Peixe-Zebra/metabolismo
3.
Proc Natl Acad Sci U S A ; 110(31): 12703-8, 2013 Jul 30.
Artigo em Inglês | MEDLINE | ID: mdl-23858438

RESUMO

Thalidomide and its analog, Lenalidomide, are in current use clinically for treatment of multiple myeloma, complications of leprosy and cancers. An additional analog, Pomalidomide, has recently been licensed for treatment of multiple myeloma, and is purported to be clinically more potent than either Thalidomide or Lenalidomide. Using a combination of zebrafish and chicken embryos together with in vitro assays we have determined the relative anti-inflammatory activity of each compound. We demonstrate that in vivo embryonic assays Pomalidomide is a significantly more potent anti-inflammatory agent than either Thalidomide or Lenalidomide. We tested the effect of Pomalidomide and Lenalidomide on angiogenesis, teratogenesis, and neurite outgrowth, known detrimental effects of Thalidomide. We found that Pomalidomide, displays a high degree of cell specificity, and has no detectable teratogenic, antiangiogenic or neurotoxic effects at potent anti-inflammatory concentrations. This is in marked contrast to Thalidomide and Lenalidomide, which had detrimental effects on blood vessels, nerves, and embryonic development at anti-inflammatory concentrations. This work has implications for Pomalidomide as a treatment for conditions Thalidomide and Lenalidomide treat currently.


Assuntos
Inibidores da Angiogênese/farmacologia , Neovascularização Fisiológica/efeitos dos fármacos , Neuritos/metabolismo , Neurotoxinas , Teratogênicos , Talidomida/análogos & derivados , Peixe-Zebra/embriologia , Animais , Embrião de Galinha , Galinhas , Lenalidomida , Especificidade da Espécie , Talidomida/farmacologia
4.
Acta Neurobiol Exp (Wars) ; 64(1): 1-9, 2004.
Artigo em Inglês | MEDLINE | ID: mdl-15190675

RESUMO

Inflammatory processes associated with the over-production of cytokines, particularly of TNF-alpha, accompany numerous neurodegenerative diseases, such as Alzheimer's disease, in addition to numerous systemic conditions, exemplified by rheumatoid arthritis and erythema nodosum leprosum (ENL). TNF-alpha has been validated as a drug target with Remicade and Enbrel available as prescription medications. Both, however, are large macromolecules, require injection and have limited brain access. The classical drug, thalidomide is being increasingly used in the clinical management of a wide spectrum of diseases. As its clinical value in treating ENL derives from its TNF-alpha inhibitory activity, thalidomide was chosen for structural modification for the discovery of novel and more potent isosteric analogues with appropriate lipophilicity to insure high brain penetration. TNF-alpha inhibitory activity was evaluated against lipopolysacharide (LPS) stimulated peripheral blood mononuclear cells (PBMC) in cell culture, whose viability was quantified to differentiate reductions in TNF-alpha secretion from that associated with cellular toxicity. Specific analogues potently inhibited TNF-alpha secretion, compared to thalidomide. This involved a post-transcriptional mechanism, as they decreased TNF-alpha mRNA stability via its 3'-untranslated region (UTR), as determined by luciferase activity in stably transfected cells with and without the 3'-UTR of human TNF-alpha.


Assuntos
Imunossupressores/química , Doenças Neurodegenerativas/tratamento farmacológico , Talidomida/análogos & derivados , Talidomida/química , Fator de Necrose Tumoral alfa/antagonistas & inibidores , Células Cultivadas , Humanos
5.
J Med Chem ; 46(24): 5222-9, 2003 Nov 20.
Artigo em Inglês | MEDLINE | ID: mdl-14613324

RESUMO

Thalidomide is being increasingly used in the clinical management of a wide spectrum of immunologically-mediated and infectious diseases, and cancers. However, the mechanisms underlying its pharmacological action are still under investigation. In this regard, oral thalidomide is clinically valuable in the treatment of erythema nodosum leprosum (ENL) and multiple myeloma and effectively reduces tumor necrosis factor-alpha (TNF-alpha) levels and angiogenesis in vivo. This contrasts with its relatively weak effects on TNF-alpha and angiogenesis in in vitro studies and implies that active metabolites contribute to its in vivo pharmacologic action and that specific analogues would be endowed with potent activity. Our focus in the structural modification of thalidomide is toward the discovery of novel isosteric active analogues. In this regard, a series of thiothalidomides and analogues were synthesized and evaluated for their TNF-alpha inhibitory activity against lipopolysacharide (LPS)-stimulated peripheral blood mononuclear cells (PBMC), This was combined with a PBMC viability assay to differentiate reductions in TNF-alpha secretion from cellular toxicity. Two isosteric analogues of thalidomide, compounds 15 and 16, that mostly reflect the parent compound, together with the simple structure, dithioglutarimide 19, potently inhibited TNF-alpha secretion, compared to thalidomide, 1. The mechanism underpinning this most likely is posttranscriptional, as each of these compounds decreased TNF-alpha mRNA stability via its 3'-UTR. The potency of 19 warrants further study and suggests that replacement of the amide carbonyl with a thiocarbonyl may be beneficial for increased TNF-alpha inhibitory action. In addition, an intact phthalimido moiety appeared to be requisite for TNF-alpha inhibitory activity.


Assuntos
Piperidinas/síntese química , Talidomida/análogos & derivados , Talidomida/síntese química , Tionas/síntese química , Fator de Necrose Tumoral alfa/antagonistas & inibidores , Regiões 3' não Traduzidas , Animais , Linhagem Celular , Genes Reporter , Humanos , Técnicas In Vitro , Lipopolissacarídeos/farmacologia , Luciferases/genética , Luciferases/metabolismo , Camundongos , Monócitos/efeitos dos fármacos , Monócitos/metabolismo , Piperidinas/farmacologia , RNA Mensageiro/genética , RNA Mensageiro/metabolismo , Relação Estrutura-Atividade , Talidomida/farmacologia , Tionas/farmacologia
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA