Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 2 de 2
Filtrar
Mais filtros


Bases de dados
Ano de publicação
Tipo de documento
Intervalo de ano de publicação
1.
Microbiol Spectr ; 12(4): e0233923, 2024 Apr 02.
Artigo em Inglês | MEDLINE | ID: mdl-38363108

RESUMO

Macrolide antibiotics such as clarithromycin (CLR) and azithromycin are the key drugs used in multidrug therapy for Mycobacterium avium complex (MAC) diseases. For these antibacterial drugs, drug susceptibility has been correlated with clinical response in MAC diseases. We have previously demonstrated the correlation between drug susceptibility and mutations in the 23S rRNA gene, which confers resistance to macrolides. Herein, we developed a rapid detection method using the amplification refractory mutation system (ARMS)-loop-mediated isothermal amplification (LAMP) technique to identify mutations in the 23S rRNA gene of M. avium. We examined the applicability of the ARMS-LAMP method to genomic DNA extracted from six genotypes of M. avium clinical isolates. The M. avium isolates were classified into 21 CLR-resistant and 9 CLR-susceptible strains based on the results of drug susceptibility tests; the 23S rRNA genes of these strains were sequenced and analyzed using the ARMS-LAMP method. Sequence analysis revealed that the 9 CLR-sensitive strains were wild-type strains, whereas the 21 CLR-resistant strains comprised 20 mutant-type strains and one wild-type strain. Using ARMS-LAMP, no amplification from genomic DNAs of the 10 wild-type strains was observed using the mutant-type mismatch primer sets (MTPSs); however, amplification from the 20 mutant-type strain DNAs was observed using the MTPSs. The rapid detection method developed by us integrates ARMS-LAMP with a real-time turbidimeter, which can help determine drug resistance in a few hours. In conclusion, ARMS-LAMP might be a new clinically beneficial technology for rapid detection of mutations.IMPORTANCEMultidrug therapy for pulmonary Mycobacterium avium complex disease is centered on the macrolide antibiotics clarithromycin and azithromycin, and resistance to macrolides is an important prognosticator for clinical aggravation. Therefore, it is important to develop a quick and easy method for detecting resistance to macrolides. Drug resistance is known to be correlated with mutations in macrolide resistance genes. We developed a rapid detection method using amplification refractory mutation system (ARMS)-loop-mediated isothermal amplification (LAMP) to identify a mutation in the 23S rRNA gene, which is a macrolide resistance gene. Furthermore, we examined the applicability of this method using M. avium clinical isolates. The rapid method developed by us for detection of the macrolide resistance gene by integrating ARMS-LAMP and a real-time turbidimeter can help in detection of drug resistance within a few hours. Since this method does not require expensive equipment or special techniques and shows high analytical speed, it would be very useful in clinical practice.


Assuntos
Antibacterianos , Pneumopatias , Técnicas de Diagnóstico Molecular , Técnicas de Amplificação de Ácido Nucleico , Humanos , Antibacterianos/farmacologia , Antibacterianos/uso terapêutico , Macrolídeos/farmacologia , Macrolídeos/uso terapêutico , Claritromicina/farmacologia , Mycobacterium avium , Azitromicina , Quimioterapia Combinada , Farmacorresistência Bacteriana/genética , Hansenostáticos/uso terapêutico , Mutação , Complexo Mycobacterium avium , Pneumopatias/tratamento farmacológico , Testes de Sensibilidade Microbiana
2.
Microbiol Spectr ; 11(1): e0432622, 2023 02 14.
Artigo em Inglês | MEDLINE | ID: mdl-36622171

RESUMO

Mycobacterium avium complex (MAC) thrives in various environments and mainly causes lung disease in humans. Because macrolide antibiotics such as clarithromycin or azithromycin are key drugs for MAC lung disease, the emergence of macrolide-resistant strains prevents the treatment of MAC. More than 95% of macrolide-resistant MAC strains are reported to have a point mutation in 23S rRNA domain V. This study successfully developed a melting curve assay using nonfluorescent labeled probes to detect the MAC mutation at positions 2058 to 2059 of the 23S rRNA gene (AA genotype, clarithromycin susceptible; TA, GA, AG, CA, AC, and AT genotypes, clarithromycin resistant). In the AA-specific probe assay, the melting peak of the DNA fragment of the AA genotype was higher than that of DNA fragments of other genotypes. Melting temperature (Tm) values of the AA genotype and the other genotypes were about 80°C and 77°C, respectively. DNA fragments of each genotype were identified correctly in six other genotype-specific probes (TA, GA, AG, CA, AC, and AT) assays. Using genomic DNA from six genotype strains of M. avium and four genotype strains of M. intracellulare, we confirmed that all genomic DNAs could be correctly identified as individual genotypes according to the highest Tm values among the same probe assays. These results indicate that this melting curve-based assay is able to determine MAC genotypes at positions 2058 to 2059 of the 23S rRNA gene. This simple method could contribute to the rapid detection of clarithromycin-resistant MAC strains and help to provide accurate drug therapy for MAC lung disease. IMPORTANCE Since macrolide antibiotics such as clarithromycin or azithromycin are key drugs in multidrug therapy for Mycobacterium avium complex (MAC) lung diseases, the rapid detection of macrolide-resistant MAC strains has important implications for the treatment of MAC. Previous studies have reported a correlation between drug susceptibility testing and the mutation of macrolide resistance genes. In this study, we developed a novel melting curve-based assay using nonfluorescent labeled probes to identify both clarithromycin-resistant M. avium and M. intracellulare with mutations in the 23S rRNA gene, which is the clarithromycin or azithromycin resistance gene. This assay contributed to not only the detection of MAC mutations but also the determination of all genotypes at positions 2058 to 2059 of the 23S rRNA gene. Furthermore, because nonfluorescent labeled probes are used, this assay is more easily and more immediately available than other methods.


Assuntos
Pneumopatias , Infecção por Mycobacterium avium-intracellulare , Mycobacterium tuberculosis , Humanos , Claritromicina/farmacologia , Claritromicina/uso terapêutico , Complexo Mycobacterium avium/genética , Antibacterianos/farmacologia , Antibacterianos/uso terapêutico , Azitromicina/uso terapêutico , Macrolídeos/uso terapêutico , Testes de Sensibilidade Microbiana , Quimioterapia Combinada , Infecção por Mycobacterium avium-intracellulare/diagnóstico , Infecção por Mycobacterium avium-intracellulare/tratamento farmacológico , Infecção por Mycobacterium avium-intracellulare/microbiologia , Farmacorresistência Bacteriana/genética , Hansenostáticos/uso terapêutico , Pneumopatias/tratamento farmacológico
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA