Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 6 de 6
Filtrar
1.
Int J Food Microbiol ; 264: 53-62, 2018 Jan 02.
Artigo em Inglês | MEDLINE | ID: mdl-29111498

RESUMO

Yeasts play a crucial role in cheese ripening. They contribute to the curd deacidification, the establishment of acid-sensitive bacterial communities, and flavour compounds production via proteolysis and catabolism of amino acids (AA). Negative yeast-yeast interaction was observed between the yeast Yarrowia lipolytica 1E07 (YL1E07) and the yeast Debaryomyces hansenii 1L25 (DH1L25) in a model cheese but need elucidation. YL1E07 and DH1L25 were cultivated in mono and co-cultures in a liquid synthetic medium (SM) mimicking the cheese environment and the growth inhibition of DH1L25 in the presence of YL1E07 was reproduced. We carried out microbiological, biochemical (lactose, lactate, AA consumption and ammonia production) and transcriptomic analyses by microarray technology to highlight the interaction mechanisms. We showed that the DH1L25 growth inhibition in the presence of YL1E07 was neither due to the ammonia production nor to the nutritional competition for the medium carbon sources between the two yeasts. The transcriptomic study was the key toward the comprehension of yeast-yeast interaction, and revealed that the inhibition of DH1L25 in co-culture is due to a decrease of the mitochondrial respiratory chain functioning.


Assuntos
Queijo/microbiologia , Debaryomyces/crescimento & desenvolvimento , Debaryomyces/metabolismo , Perfilação da Expressão Gênica/métodos , Yarrowia/crescimento & desenvolvimento , Yarrowia/metabolismo , Aminoácidos/metabolismo , Amônia/metabolismo , Técnicas de Cocultura , Debaryomyces/genética , Aromatizantes/análise , Microbiologia de Alimentos , Ácido Láctico/metabolismo , Lactose/metabolismo , Interações Microbianas/genética , Interações Microbianas/fisiologia , Transcriptoma/genética
2.
Front Microbiol ; 7: 536, 2016.
Artigo em Inglês | MEDLINE | ID: mdl-27148224

RESUMO

The microbial communities in cheeses are composed of varying bacteria, yeasts, and molds, which contribute to the development of their typical sensory properties. In situ studies are needed to better understand their growth and activity during cheese ripening. Our objective was to investigate the activity of the microorganisms used for manufacturing a surface-ripened cheese by means of metatranscriptomic analysis. The cheeses were produced using two lactic acid bacteria (Streptococcus thermophilus and Lactobacillus delbrueckii ssp. bulgaricus), one ripening bacterium (Brevibacterium aurantiacum), and two yeasts (Debaryomyces hansenii and Geotrichum candidum). RNA was extracted from the cheese rinds and, after depletion of most ribosomal RNA, sequencing was performed using a short-read sequencing technology that generated ~75 million reads per sample. Except for B. aurantiacum, which failed to grow in the cheeses, a large number of CDS reads were generated for the inoculated species, making it possible to investigate their individual transcriptome over time. From day 5 to 35, G. candidum accounted for the largest proportion of CDS reads, suggesting that this species was the most active. Only minor changes occurred in the transcriptomes of the lactic acid bacteria. For the two yeasts, we compared the expression of genes involved in the catabolism of lactose, galactose, lactate, amino acids, and free fatty acids. During ripening, genes involved in ammonia assimilation and galactose catabolism were down-regulated in the two species. Genes involved in amino acid catabolism were up-regulated in G. candidum from day 14 to day 35, whereas in D. hansenii, they were up-regulated mainly at day 35, suggesting that this species catabolized the cheese amino acids later. In addition, after 35 days of ripening, there was a down-regulation of genes involved in the electron transport chain, suggesting a lower cellular activity. The present study has exemplified how metatranscriptomic analyses provide insight into the activity of cheese microbial communities for which reference genome sequences are available. In the future, such studies will be facilitated by the progress in DNA sequencing technologies and by the greater availability of the genome sequences of cheese microorganisms.

3.
Microbiol Spectr ; 2(1): CM-0010-2012, 2014 Feb.
Artigo em Inglês | MEDLINE | ID: mdl-26082119

RESUMO

Comprehensive collaborative studies from our laboratories reveal the extensive biodiversity of the microflora of the surfaces of smear-ripened cheeses. Two thousand five hundred ninety-seven strains of bacteria and 2,446 strains of yeasts from the surface of the smear-ripened cheeses Limburger, Reblochon, Livarot, Tilsit, and Gubbeen, isolated at three or four times during ripening, were identified; 55 species of bacteria and 30 species of yeast were found. The microfloras of the five cheeses showed many similarities but also many differences and interbatch variation. Very few of the commercial smear microorganisms, deliberately inoculated onto the cheese surface, were reisolated and then mainly from the initial stages of ripening, implying that smear cheese production units must have an adventitious "house" flora. Limburger cheese had the simplest microflora, containing two yeasts, Debaryomyces hansenii and Geotrichum candidum, and two bacteria, Arthrobacter arilaitensis and Brevibacterium aurantiacum. The microflora of Livarot was the most complicated, comprising 10 yeasts and 38 bacteria, including many gram-negative organisms. Reblochon also had a very diverse microflora containing 8 yeasts and 13 bacteria (excluding gram-negative organisms which were not identified), while Gubbeen had 7 yeasts and 18 bacteria and Tilsit had 5 yeasts and 9 bacteria. D. hansenii was by far the dominant yeast, followed in order by G. candidum, Candida catenulata, and Kluyveromyces lactis. B. aurantiacum was the dominant bacterium and was found in every batch of the 5 cheeses. The next most common bacteria, in order, were Staphylococcus saprophyticus, A. arilaitensis, Corynebacterium casei, Corynebacterium variabile, and Microbacterium gubbeenense. S. saprophyticus was mainly found in Gubbeen, and A. arilaitensis was found in all cheeses but not in every batch. C. casei was found in most batches of Reblochon, Livarot, Tilsit, and Gubbeen. C. variabile was found in all batches of Gubbeen and Reblochon but in only one batch of Tilsit and in no batch of Limburger or Livarot. Other bacteria were isolated in low numbers from each of the cheeses, suggesting that each of the 5 cheeses has a unique microflora. In Gubbeen cheese, several different strains of the dominant bacteria were present, as determined by pulsed-field gel electrophoresis, and many of the less common bacteria were present as single clones. The culture-independent method, denaturing gradient gel electrophoresis, resulted in identification of several bacteria which were not found by the culture-dependent (isolation and rep-PCR identification) method. It was thus a useful complementary technique to identify other bacteria in the cheeses. The gross composition, the rate of increase in pH, and the indices of proteolysis were different in most of the cheeses.


Assuntos
Bactérias/classificação , Bactérias/isolamento & purificação , Queijo/microbiologia , Consórcios Microbianos , Leveduras/classificação , Leveduras/isolamento & purificação
4.
Appl Environ Microbiol ; 79(2): 469-77, 2013 Jan.
Artigo em Inglês | MEDLINE | ID: mdl-23124230

RESUMO

The cheese microbiota contributes to a large extent to the development of the typical color, flavor, and texture of the final product. Its composition is not well defined in most cases and varies from one cheese to another. The aim of the present study was to establish procedures for gene transcript quantification in cheeses by reverse transcription-quantitative PCR. Total RNA was extracted from five smear-ripened cheeses purchased on the retail market, using a method that does not involve prior separation of microbial cells. 16S rRNA and malate:quinone oxidoreductase gene transcripts of Corynebacterium casei, Brevibacterium aurantiacum, and Arthrobacter arilaitensis and 26S rRNA and beta tubulin gene transcripts of Geotrichum candidum and Debaryomyces hansenii could be detected and quantified in most of the samples. Three types of normalization were applied: against total RNA, against the amount of cheese, and against a reference gene. For the first two types of normalization, differences of reverse transcription efficiencies from one sample to another were taken into account by analysis of exogenous control mRNA. No good correlation was found between the abundances of target mRNA or rRNA transcripts and the viable cell concentration of the corresponding species. However, in most cases, no mRNA transcripts were detected for species that did not belong to the dominant species. The applications of gene expression measurement in cheeses containing an undefined microbiota, as well as issues concerning the strategy of normalization and the assessment of amplification specificity, are discussed.


Assuntos
Carga Bacteriana/métodos , Queijo/microbiologia , Contagem de Colônia Microbiana/métodos , RNA Bacteriano/isolamento & purificação , RNA Fúngico/isolamento & purificação , Reação em Cadeia da Polimerase em Tempo Real/métodos , RNA Bacteriano/genética , RNA Fúngico/genética , Sensibilidade e Especificidade
5.
Appl Environ Microbiol ; 74(1): 172-81, 2008 Jan.
Artigo em Inglês | MEDLINE | ID: mdl-17981942

RESUMO

The interactions that occur during the ripening of smear cheeses are not well understood. Yeast-yeast interactions and yeast-bacterium interactions were investigated within a microbial community composed of three yeasts and six bacteria found in cheese. The growth dynamics of this community was precisely described during the ripening of a model cheese, and the Lotka-Volterra model was used to evaluate species interactions. Subsequently, the effects on ecosystem functioning of yeast omissions in the microbial community were evaluated. It was found both in the Lotka-Volterra model and in the omission study that negative interactions occurred between yeasts. Yarrowia lipolytica inhibited mycelial expansion of Geotrichum candidum, whereas Y. lipolytica and G. candidum inhibited Debaryomyces hansenii cell viability during the stationary phase. However, the mechanisms involved in these interactions remain unclear. It was also shown that yeast-bacterium interactions played a significant role in the establishment of this multispecies ecosystem on the cheese surface. Yeasts were key species in bacterial development, but their influences on the bacteria differed. It appeared that the growth of Arthrobacter arilaitensis or Hafnia alvei relied less on a specific yeast function because these species dominated the bacterial flora, regardless of which yeasts were present in the ecosystem. For other bacteria, such as Leucobacter sp. or Brevibacterium aurantiacum, growth relied on a specific yeast, i.e., G. candidum. Furthermore, B. aurantiacum, Corynebacterium casei, and Staphylococcus xylosus showed reduced colonization capacities in comparison with the other bacteria in this model cheese. Bacterium-bacterium interactions could not be clearly identified.


Assuntos
Antibiose/fisiologia , Bactérias/crescimento & desenvolvimento , Queijo/microbiologia , Ecossistema , Fungos/crescimento & desenvolvimento , Bactérias/isolamento & purificação , Fungos/isolamento & purificação , Viabilidade Microbiana , Micélio/crescimento & desenvolvimento
6.
J Dairy Res ; 73(4): 441-8, 2006 Nov.
Artigo em Inglês | MEDLINE | ID: mdl-16978429

RESUMO

The growth of five bacteria isolated from red-smear cheeses, Brevibacterium aurantiacum, Corynebacterium casei, Corynebacterium variabile, Microbacterium gubbeenense and Staphylococcus saprophyticus in mixed cultures with Debaryomyces hansenii on aseptic model cheese curd at 10 and 14 degrees C was investigated. At both temperatures, C. casei and Micro. gubbeenense had a longer lag phase than C. variabile, Brevi. aurantiacum and Staph. saprophyticus. In all cultures, lactose was utilised first and was consumed more rapidly at 14 degrees C than at 10 degrees C, i.e., 6 d at 14 degrees C and 10 d at 10 degrees C. This utilisation coincided with the exponential growth of Deb. hansenii on the cheese surface. Lactate was also used as a carbon source and was totally consumed after 21 d at 14 degrees C and approximately 90% was consumed after 21 d at 10 degrees C regardless of the ripening culture. Small differences (<0.5 pH unit) in the surface-pH during ripening were noticeable between ripening cultures. Differences in the colour development of the mixed cultures with the yeast control were only noticeable after 15 d for Brevi. aurantiacum and after 21 d for the other bacteria. Regardless of the organisms tested, colour development and colour intensity were also greater at 14 degrees C than at 10 degrees C. This study has provided useful information on the growth and contribution to colour development of these bacteria on cheese.


Assuntos
Queijo/microbiologia , Fermentação , Manipulação de Alimentos/métodos , Microbiologia de Alimentos , Saccharomycetales/crescimento & desenvolvimento , Brevibacterium/crescimento & desenvolvimento , Contagem de Colônia Microbiana , Cor , Corynebacterium/crescimento & desenvolvimento , Concentração de Íons de Hidrogênio , Saccharomycetales/metabolismo , Staphylococcus/crescimento & desenvolvimento , Temperatura , Fatores de Tempo
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA