Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 6 de 6
Filtrar
1.
J Med Microbiol ; 68(11): 1629-1640, 2019 Nov.
Artigo em Inglês | MEDLINE | ID: mdl-31553301

RESUMO

Introduction. ML1899 is conserved in all mycobacterium sp. and is a middle member of mle-ML1898 operon involved in mycolic acid modification.Aim. In the present study attempts were made to characterize ML1899 in detail.Methodology. Bioinformatics tools were used for prediction of active-site residues, antigenic epitopes and a three-dimensional model of protein. The gene was cloned, expressed and purified as His-tagged protein in Escherichia coli for biophysical/biochemical characterization. Recombinant protein was used to treat THP-1 cells to study change in production of nitric oxide (NO), reactive oxygen species (ROS), cytokines and chemokines using flowcytometry/ELISA.Results. In silico analysis predicted ML1899 as a member of α/ß hydrolase family with GXSXG-motif and Ser126, His282, Asp254 as active-site residues that were confirmed by site-directed mutagensis. ML1899 exhibited esterase activity. It hydrolysed pNP-butyrate as optimum substrate at pH 8.0 and 50 °C with 5.56 µM-1 min-1 catalytic efficiency. The enzyme exhibited stability up to 60 °C temperature and between pH 6.0 to 9.0. K m, V max and specific activity of ML1899 were calculated to be 400 µM, 40 µmoles min-1 ml-1 and 27 U mg- 1, respectively. ML1899 also exhibited phospholipase activity. The protein affected the survival of macrophages when treated at higher concentration. ML1899 enhanced ROS/NO production and up-regulated pro-inflammatory cytokines and chemokine including TNF-α, IFN-γ, IL-6 and IL-8 in macrophages. ML1899 was also observed to elicit humoral response in 69 % of leprosy patients.Conclusion. These results suggested that ML1899, an esterase could up-regulate the immune responses in favour of macrophages at a low concentration but kills the THP-1 macrophages cells at a higher concentration.


Assuntos
Proteínas de Bactérias/imunologia , Esterases/imunologia , Hanseníase/microbiologia , Mycobacterium leprae/enzimologia , Sequência de Aminoácidos , Anticorpos Antibacterianos/imunologia , Proteínas de Bactérias/química , Proteínas de Bactérias/genética , Citocinas/genética , Citocinas/imunologia , Estabilidade Enzimática , Esterases/química , Esterases/genética , Feminino , Humanos , Concentração de Íons de Hidrogênio , Cinética , Hanseníase/imunologia , Macrófagos/imunologia , Macrófagos/microbiologia , Masculino , Mycobacterium leprae/química , Mycobacterium leprae/genética , Mycobacterium leprae/imunologia , Óxido Nítrico/imunologia , Espécies Reativas de Oxigênio/imunologia , Alinhamento de Sequência
2.
J Biomol Struct Dyn ; 37(5): 1254-1269, 2019 Mar.
Artigo em Inglês | MEDLINE | ID: mdl-29557724

RESUMO

The lipolytic protein LipU was conserved in mycobacterium sp. including M. tuberculosis (MTB LipU) and M. leprae (MLP LipU). The MTB LipU was identified in extracellular fraction and was reported to be essential for the survival of mycobacterium. Therefore to address the problem of drug resistance in pathogen, LipU was selected as a drug target and the viability of finding out some FDA approved drugs as LipU inhibitors in both the cases was explored. Three-dimensional (3D) model structures of MTB LipU and MLP LipU were generated and stabilized through molecular dynamics (MD). FDA approved drugs were screened against these proteins. The result showed that the top-scoring compounds for MTB LipU were Diosmin, Acarbose and Ouabain with the Glide XP score of -12.8, -11.9 and -11.7 kcal/mol, respectively, whereas for MLP LipU protein, Digoxin (-9.2 kcal/mol), Indinavir (-8.2 kcal/mol) and Travoprost (-8.2 kcal/mol) showed highest affinity. These drugs remained bound in the active site pocket of MTB LipU and MLP LipU structure and interaction grew stronger after dynamics. RMSD, RMSF and Rg were found to be persistent throughout the simulation period. Hydrogen bonds along with large number of hydrophobic interactions stabilized the complex structures. Binding free energies obtained through Prime/MM-GBSA were found in the significant range from -63.85 kcal/mol to -34.57 kcal/mol for MTB LipU and -71.33 kcal/mol to -23.91 kcal/mol for MLP LipU. The report suggested high probability of these drugs to demolish the LipU activity and could be probable drug candidates to combat TB and leprosy disease.


Assuntos
Antituberculosos/química , Antituberculosos/farmacologia , Proteínas de Bactérias/antagonistas & inibidores , Proteínas de Bactérias/química , Simulação de Acoplamento Molecular , Simulação de Dinâmica Molecular , Proteínas de Bactérias/genética , Sítios de Ligação , Domínio Catalítico , Avaliação Pré-Clínica de Medicamentos , Humanos , Ligação de Hidrogênio , Interações Hidrofóbicas e Hidrofílicas , Ligantes , Mycobacterium leprae/genética , Mycobacterium tuberculosis/genética , Ligação Proteica , Reprodutibilidade dos Testes
3.
Gene ; 643: 26-34, 2018 Feb 15.
Artigo em Inglês | MEDLINE | ID: mdl-29208413

RESUMO

Mycobacterium leprae has a reduced genome size due to the reductive evolution over a long period of time. Lipid metabolism plays an important role in the life cycle and pathogenesis of this bacterium. In comparison to 26 lip genes (Lip A-Z) of M. tuberculosis, M. leprae retained only three orthologs indicating their importance in its life cycle. ML0314c (LipU) is one of them. It is conserved throughout the mycobacterium species. Bioinformatics analysis showed the presence of an α/ß hydrolase fold and 'GXSXG' characteristic of the esterases/lipases. The gene was expressed in E. coli and purified to homogeneity. It showed preference towards short chain esters with pNP-acetate as the preferred substrate. The enzyme showed optimal activity at 45°C and pH8.0. ML0314c protein was stable between temperatures ranging from 20 to 60°C and pH5.0-8.0, i.e., relatively acidic and neutral conditions. The active site residues predicted bioinformatically were confirmed to be Ser168, Glu267, and His297 by site directed mutagenesis. E-serine, DEPC and Tetrahydrolipstatin (THL) completely inhibited the activity of ML0314c. The protein was localized in cell wall and extracellular medium. Several antigenic epitopes were predicted in ML0314c. Protein elicited strong humoral immune response in leprosy patients, whereas, a reduced immune response was observed in the relapsed cases. No humoral response was observed in treatment completed patients. Overexpression of ml0314c in the surrogate host M. smegmatis showed marked difference in the colony morphology and growth rate. In conclusion, ML0314c is a secretary carboxyl esterase that could modulate the immune response in leprosy patients.


Assuntos
Lipólise/genética , Mycobacterium leprae/genética , Mycobacterium leprae/metabolismo , Sequência de Aminoácidos/genética , Proteínas de Bactérias/genética , Proteínas de Bactérias/metabolismo , Hidrolases de Éster Carboxílico/metabolismo , Domínio Catalítico/genética , Clonagem Molecular/métodos , Escherichia coli/genética , Humanos , Concentração de Íons de Hidrogênio , Hanseníase/metabolismo , Hanseníase/microbiologia , Lipase/genética , Metabolismo dos Lipídeos/genética , Lipídeos , Mutagênese Sítio-Dirigida/métodos , Mycobacterium tuberculosis/genética , Especificidade por Substrato/genética , Fatores de Virulência
4.
Curr Drug Targets ; 18(16): 1904-1918, 2017 Nov 30.
Artigo em Inglês | MEDLINE | ID: mdl-28699515

RESUMO

BACKGROUND: Mycobacteria genus is responsible for deadly diseases like tuberculosis and leprosy. Cell wall of bacteria belonging to this genus is unique in many ways. It plays a major role in the pathogenesis and intracellular survival inside the host. In intracellular pathogens, their cell wall acts as molecular shield and interacts with host cell milieu to modulate host defense responses. OBJECTIVES: In this review, we summarize the factors that participate in the biosynthesis of unique mycobacterial cell wall, understand their potential as drug targets and the recent developments where they have been evaluated as possible drug targets. RESULTS: Several cell wall associated factors that play crucial roles in the synthesis of cell wall components like Antigen 85 complex, Glycosyltransferases (GTs), LM (lipomannan) and LAM (lipoarabinomannan), mAGP Complex, lipolytic enzyme have been categorically documented. Most of the presently used anti TB regimens interrupted cell wall synthesis, but the emergence of drug resistant strains made it mandatory to identify new drug targets. Novel drug candidates which could inhibit the synthesis of cell wall components have been thoroughly studied worldwide. CONCLUSION: Studies demonstrated that the cell wall components are unique in terms of their contribution in mycobacterium pathogenesis. Targeting these can hamper the growth of M. tuberculosis. In this study, we scrutinize the drugs under trials and the potential candidates screened through in silico findings.


Assuntos
Antituberculosos/farmacologia , Parede Celular/efeitos dos fármacos , Mycobacterium tuberculosis/patogenicidade , Tuberculose/tratamento farmacológico , Fatores de Virulência/metabolismo , Antituberculosos/química , Antituberculosos/uso terapêutico , Proteínas de Bactérias/metabolismo , Vias Biossintéticas/efeitos dos fármacos , Parede Celular/metabolismo , Ensaios Clínicos como Assunto , Simulação por Computador , Desenho de Fármacos , Regulação Bacteriana da Expressão Gênica/efeitos dos fármacos , Humanos , Mycobacterium tuberculosis/efeitos dos fármacos , Mycobacterium tuberculosis/metabolismo
5.
Future Microbiol ; 12: 315-335, 2017 03.
Artigo em Inglês | MEDLINE | ID: mdl-28287297

RESUMO

Mycobacterium leprae must adopt a metabolic strategy and undergo various metabolic alterations upon infection to survive inside the human body for years in a dormant state. A change in lipid homeostasis upon infection is highly pronounced in Mycobacterium leprae. Lipids play an essential role in the survival and pathogenesis of mycobacteria. Lipids are present in several forms and serve multiple roles from being a source of nutrition, providing rigidity, evading the host immune response to serving as virulence factors, etc. The synthesis and degradation of lipids is a highly regulated process and is the key to future drug designing and diagnosis for mycobacteria. In the current review, an account of the distinct roles served by lipids, the mechanism of their synthesis and degradation has been elucidated.


Assuntos
Hanseníase/microbiologia , Metabolismo dos Lipídeos , Mycobacterium leprae/metabolismo , Animais , Proteínas de Bactérias/genética , Proteínas de Bactérias/metabolismo , Humanos , Hanseníase/metabolismo , Mycobacterium leprae/genética , Mycobacterium leprae/crescimento & desenvolvimento , Fatores de Virulência/genética , Fatores de Virulência/metabolismo
6.
Mol Biol Int ; 2014: 937308, 2014.
Artigo em Inglês | MEDLINE | ID: mdl-24782926

RESUMO

The genome of Mycobacterium is rich in GC content and poses problem in amplification of some genes, especially those rich in the GC content in terminal regions, by standard/routine PCR procedures. Attempts have been made to amplify three GC rich genes of Mycobacterium sp. (Rv0519c and Rv0774c from M. tuberculosis and ML0314c from M. leprae). Out of these three genes, Rv0774c gene was amplified with normal primers under standard PCR conditions, while no amplification was observed in case of Rv0519c and ML0314c genes. In the present investigation a modified primer based approach was successfully used for amplification of GC rich sequence of Rv0519c through codon optimization without changing the native amino acid sequence. The strategy was successfully confirmed by redesigning the standard primers with similar modifications followed by amplification of ML0314c gene.

SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA