Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 2 de 2
Filtrar
Mais filtros


Bases de dados
Ano de publicação
Tipo de documento
Intervalo de ano de publicação
1.
Haematologica ; 105(4): 971-986, 2020 04.
Artigo em Inglês | MEDLINE | ID: mdl-31371410

RESUMO

Leukemia stem cells contribute to drug-resistance and relapse in chronic myeloid leukemia (CML) and BCR-ABL1 inhibitor monotherapy fails to eliminate these cells, thereby necessitating alternate therapeutic strategies for patients CML. The peroxisome proliferator-activated receptor-γ (PPARγ) agonist pioglitazone downregulates signal transducer and activator of transcription 5 (STAT5) and in combination with imatinib induces complete molecular response in imatinib-refractory patients by eroding leukemia stem cells. Thiazolidinediones such as pioglitazone are, however, associated with severe side effects. To identify alternate therapeutic strategies for CML we screened Food and Drug Administration-approved drugs in K562 cells and identified the leprosy drug clofazimine as an inhibitor of viability of these cells. Here we show that clofazimine induced apoptosis of blood mononuclear cells derived from patients with CML, with a particularly robust effect in imatinib-resistant cells. Clofazimine also induced apoptosis of CD34+38- progenitors and quiescent CD34+ cells from CML patients but not of hematopoietic progenitor cells from healthy donors. Mechanistic evaluation revealed that clofazimine, via physical interaction with PPARγ, induced nuclear factor kB-p65 proteasomal degradation, which led to sequential myeloblastoma oncoprotein and peroxiredoxin 1 downregulation and concomitant induction of reactive oxygen species-mediated apoptosis. Clofazimine also suppressed STAT5 expression and consequently downregulated stem cell maintenance factors hypoxia-inducible factor-1α and -2α and Cbp/P300 interacting transactivator with Glu/Asp-rich carboxy-terminal domain 2 (CITED2). Combining imatinib with clofazimine caused a far superior synergy than that with pioglitazone, with clofazimine reducing the half maximal inhibitory concentration (IC50) of imatinib by >4 logs and remarkably eroding quiescent CD34+ cells. In a K562 xenograft study clofazimine and imatinib co-treatment showed more robust efficacy than the individual treatments. We propose clinical evaluation of clofazimine in imatinib-refractory CML.


Assuntos
Hanseníase , Leucemia Mielogênica Crônica BCR-ABL Positiva , Preparações Farmacêuticas , Apoptose , Clofazimina/farmacologia , Resistencia a Medicamentos Antineoplásicos , Proteínas de Fusão bcr-abl/genética , Humanos , Mesilato de Imatinib/farmacologia , Células K562 , Leucemia Mielogênica Crônica BCR-ABL Positiva/tratamento farmacológico , PPAR gama
2.
Naunyn Schmiedebergs Arch Pharmacol ; 391(10): 1093-1105, 2018 10.
Artigo em Inglês | MEDLINE | ID: mdl-29982937

RESUMO

Despite of medical disaster caused by thalidomide in 1960s, the drug came to clinical use again for the treatment of erythema nodosum leprosum (ENL) and multiple myeloma. Recently, a new generation of children affected by thalidomide intake by their mothers during pregnancy has been identified in Brazil. In the past few years, there is the great enhancement in our understanding of the molecular mechanisms and targets of thalidomide with the help of modern OMICS technologies. However, understanding of cardiac-specific anomalies in fetus due to thalidomide intake by the respective mother has not been explored fully. At organ level, thalidomide causes congenital heart diseases, limb deformities in addition to ocular, and neural and ear abnormalities. The period of morning sickness and cardiogenesis is synchronized in pregnant women. Therefore, thalidomide intake during the first trimester could affect cardiogenesis severely. Thalidomide intake in pregnant women either causes miscarriage or heart abnormalities such as patent ductus arteriosus, ventricular septal defect (VSD), atrial septal defect (ASD), and pulmonary stenosis in survivors. In the present study, we identified a novel morphological defect (lump) in the heart of thalidomide-treated chick embryos. We characterized the lump at morphological, histo-pathological, oxidative stress, electro-physiological, and gene expression level. To our knowledge, here, we report the very first electrophysiological characterization of embryonic heart affected by thalidomide treatment.


Assuntos
Coração/efeitos dos fármacos , Hematoma/induzido quimicamente , Miocárdio/patologia , Teratogênicos/toxicidade , Talidomida/toxicidade , Animais , Embrião de Galinha , Coração/embriologia , Coração/fisiologia , Hemoglobinas/metabolismo , Miocárdio/metabolismo , Estresse Oxidativo , Espécies Reativas de Oxigênio/metabolismo
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA