Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 7 de 7
Filtrar
3.
BMC Genomics ; 10: 397, 2009 Aug 25.
Artigo em Inglês | MEDLINE | ID: mdl-19706172

RESUMO

BACKGROUND: The Mycobacterium leprae genome has less than 50% coding capacity and 1,133 pseudogenes. Preliminary evidence suggests that some pseudogenes are expressed. Therefore, defining pseudogene transcriptional and translational potentials of this genome should increase our understanding of their impact on M. leprae physiology. RESULTS: Gene expression analysis identified transcripts from 49% of all M. leprae genes including 57% of all ORFs and 43% of all pseudogenes in the genome. Transcribed pseudogenes were randomly distributed throughout the chromosome. Factors resulting in pseudogene transcription included: 1) co-orientation of transcribed pseudogenes with transcribed ORFs within or exclusive of operon-like structures; 2) the paucity of intrinsic stem-loop transcriptional terminators between transcribed ORFs and downstream pseudogenes; and 3) predicted pseudogene promoters. Mechanisms for translational "silencing" of pseudogene transcripts included the lack of both translational start codons and strong Shine-Dalgarno (SD) sequences. Transcribed pseudogenes also contained multiple "in-frame" stop codons and high Ka/Ks ratios, compared to that of homologs in M. tuberculosis and ORFs in M. leprae. A pseudogene transcript containing an active promoter, strong SD site, a start codon, but containing two in frame stop codons yielded a protein product when expressed in E. coli. CONCLUSION: Approximately half of M. leprae's transcriptome consists of inactive gene products consuming energy and resources without potential benefit to M. leprae. Presently it is unclear what additional detrimental affect(s) this large number of inactive mRNAs has on the functional capability of this organism. Translation of these pseudogenes may play an important role in overall energy consumption and resultant pathophysiological characteristics of M. leprae. However, this study also demonstrated that multiple translational "silencing" mechanisms are present, reducing additional energy and resource expenditure required for protein production from the vast majority of these transcripts.


Assuntos
Perfilação da Expressão Gênica , Genoma Bacteriano , Mycobacterium leprae/genética , Pseudogenes , Sequência de Bases , Códon de Iniciação , Códon de Terminação , Regulação Bacteriana da Expressão Gênica , Inativação Gênica , Genes Bacterianos , Dados de Sequência Molecular , Análise de Sequência com Séries de Oligonucleotídeos , Fases de Leitura Aberta , Regiões Promotoras Genéticas , Biossíntese de Proteínas , Transcrição Gênica
4.
J Clin Microbiol ; 47(7): 2124-30, 2009 Jul.
Artigo em Inglês | MEDLINE | ID: mdl-19439537

RESUMO

Mycobacterium leprae, the etiological agent of leprosy, is noncultivable on axenic media. Therefore, the viability of M. leprae for clinical or experimental applications is often unknown. To provide new tools for M. leprae viability determination, two quantitative reverse transcriptase PCR (RT-PCR) assays were developed and characterized. M. leprae sodA mRNA and 16S rRNA were used as RNA targets, and M. leprae repetitive element (RLEP) DNA was used to determine relative bacterial numbers in the same purified bacterial preparations or from crude biological specimens. Results demonstrated that both assays were good predictors of M. leprae viability during short-term experiments (48 h) involving rifampin (rifampicin) treatment in axenic medium, within rifampin-treated murine macrophages (MPhi), or within immune-activated MPhi. Moreover, these results strongly correlated those of other M. leprae viability assays, including radiorespirometry-based and Live/Dead BacLight viability assays. The 16S rRNA/RLEP assay consistently identified the presence of M. leprae in eight multibacillary leprosy patient biopsy specimens prior to multidrug therapy (MDT) and demonstrated a decline in viability during the course of MDT. In contrast, the sodA/RLEP assay was able to detect the presence of M. leprae in only 25% of pretreatment biopsy specimens. In conclusion, new tools for M. leprae viability determination were developed. The 16S rRNA/RLEP RT-PCR M. leprae viability assay should be useful both for short-term experimental purposes and for predicting M. leprae viability in biopsy specimens to monitor treatment efficacy, whereas the sodA/RLEP RT-PCR M. leprae viability assay should be limited to short-term experimental research purposes.


Assuntos
DNA Bacteriano/genética , Hanseníase/microbiologia , Viabilidade Microbiana , Mycobacterium leprae/fisiologia , Reação em Cadeia da Polimerase/métodos , Animais , Proteínas de Bactérias/genética , Primers do DNA/genética , Humanos , Hanseníase/tratamento farmacológico , Macrófagos/microbiologia , Camundongos , Mycobacterium leprae/genética , RNA Ribossômico 16S/genética , Superóxido Dismutase/genética
5.
Ophthalmic Res ; 39(2): 63-8, 2007.
Artigo em Inglês | MEDLINE | ID: mdl-17287607

RESUMO

AIM: To report detection of leprosy in ocular tissue by histopathology and its confirmation by genetic analysis. METHODS: Excised tissue from a clinically-suspected ocular leprosy patient was processed and analyzed histopathologically. The DNA from the paraffin-embedded tissue was extracted, an 85 A-C intergenic region of Mycobacterium leprae was amplified using specific primers and analyzed by conventional as well as real-time polymerase chain reaction (RT-PCR). RESULTS: With periodic acid-Schiff-hematoxylin (PAS-H) staining the specimen showed presence of a thin fibrinous layer of inflammatory cells. The majority of the tissue was fibrovascular with extensive infiltration by histiocytes having reticulated cytoplasm. Modified PAS-H and acid-fast staining (AFS) showed the presence of several acid-fast organisms within the cytoplasm of histiocytes and mast cells. Conventional PCR showed a 250-bp DNA from excised conjunctival tissue, which was in agreement with the positive controls for M. leprae. Through RT-PCR, it was calculated that the suspected tissue had 44.68 pg of M. leprae DNA, which is 8937.06 genome copies of M. leprae. CONCLUSIONS: Presence of inflammatory cells and AFS bacilli in tissue presented a typical picture of leprosy. M. leprae DNA can be detected using RT-PCR in ocular tissues when acid-fast bacteria are seen in histopathological sections. And when the diagnosis of leprosy is inconclusive and acid-fast bacteria are seen, RT-PCR for M. leprae DNA could be used as a rapid confirmatory test to identify the presence of M. leprae and, therefore, the diagnosis of leprosy.


Assuntos
Doenças da Túnica Conjuntiva/patologia , DNA Bacteriano/análise , Infecções Oculares Bacterianas/patologia , Hanseníase/patologia , Mycobacterium leprae/isolamento & purificação , Reação em Cadeia da Polimerase Via Transcriptase Reversa/métodos , Adulto , Doenças da Túnica Conjuntiva/microbiologia , Infecções Oculares Bacterianas/microbiologia , Feminino , Humanos , Hanseníase/microbiologia , Mycobacterium leprae/genética
6.
J Clin Microbiol ; 44(9): 3154-9, 2006 Sep.
Artigo em Inglês | MEDLINE | ID: mdl-16954241

RESUMO

In spite of the decrease in the number of registered leprosy patients, the number of new cases diagnosed each year (400,000) has remained essentially unchanged. Leprosy diagnosis is difficult due to the low sensitivity of current methodologies to identify new cases. In this study, conventional and TaqMan real-time PCR assays for detection of Mycobacterium leprae DNA were compared to current classification based on clinical, bacteriological, and histological evaluation. M. leprae DNA was extracted from frozen skin biopsy specimens from 69 leprosy patients enrolled in the study and was amplified using specific primers for either the antigen 85B-coding gene or the 85A-C intergenic region by using conventional and real-time PCR. The detection rate was 100% among multibacillary (MB) patients and ranged from 62.5% to 79.2% among paucibacillary (PB) patients according to the assay used. The TaqMan system for 85B gene amplification showed the highest sensitivity, although conventional PCR using the 85A-C gene as a target was also efficient. The cycle threshold (C(T)) values obtained using the TaqMan system were able to statistically (P < 0.0001) differentiate MB (mean C(T), 28.06; standard deviation [SD], 4.51) from PB (mean C(T), 33.06; SD, 2.24) patients. Also, there was a correlation between C(T) values and the bacteriological index for MB patients (Pearson's r, -0.444; P = 0.008). Within the PB patients' group, we tested normal skin from six patients exhibiting the pure neuritic form of leprosy (PNL). Five out of six PNL patients were positive for the presence of M. leprae DNA, even in the absence of skin lesions. In conclusion, the TaqMan real-time PCR developed here seems to be a useful tool for rapidly detecting and quantifying M. leprae DNA in clinical specimens in which bacilli were undetectable by conventional histological staining.


Assuntos
Antígenos de Bactérias/genética , Hanseníase/microbiologia , Mycobacterium leprae/isolamento & purificação , Reação em Cadeia da Polimerase/métodos , Pele/microbiologia , Proteínas de Bactérias/genética , Proteínas de Bactérias/metabolismo , Biópsia , DNA Bacteriano/análise , DNA Bacteriano/isolamento & purificação , Humanos , Hanseníase/diagnóstico , Mycobacterium leprae/genética , Sensibilidade e Especificidade , Taq Polimerase/metabolismo
7.
Lepr Rev ; 76(3): 232-40, 2005 Sep.
Artigo em Inglês | MEDLINE | ID: mdl-16248210

RESUMO

Pure neural leprosy (PNL) is difficult to diagnose because skin lesions and acid-fast bacilli (AFB) in slit smears are absent. At present, the gold standard for PNL diagnosis is the histopathological examination of a peripheral nerve biopsy. Even so, detection of bacteria is difficult and histological findings may be non-specific. Furthermore, nerve biopsy is an invasive procedure that is only possible in specialized centres. Therefore, there is a need for additional diagnostic methods that may help to confirm the clinical diagnosis of PNL. In the present study, an additional laboratory test, the ELISA for anti-phenolic glycolipid I (PGL-I) IgM antibodies, was performed on 103 individuals with clinical and neurophysiological signs of peripheral neuropathy, of which 67 were diagnosed as PNL patients and 36 remained as 'not diagnosed as PNL', as well as on a control group of 34 patients with other neurological diseases. An antibody response was present in 14/67 (21%) of the patients diagnosed as PNL as compared with 3/34 (9%) of controls. Anti-PGL-I positivity was observed in 5/8 (63%) of the AFB positive cases. Patients whose diagnosis was confirmed solely by Mycobacterium leprae PCR on the nerve sample had 4/25 (16%) seropositivity. In addition, anti-PGL-I antibodies were detected in 9/40 (23%) of the PNL patients who were PCR negative for M. leprae DNA. Moreover, two patients who showed clinical and eletrophysiological manifestations suggestive of PNL were diagnosed with the help of their positive test results in the anti-PGL-I ELISA. In conclusion, detection of antibodies against PGL-I in patients with peripheral neuropathy is useful as an additional laboratory test to help PNL diagnosis.


Assuntos
Anticorpos Antibacterianos/imunologia , Antígenos de Bactérias/imunologia , Glicolipídeos/imunologia , Hanseníase Tuberculoide/diagnóstico , Hanseníase Tuberculoide/imunologia , Mycobacterium leprae/imunologia , Humanos
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA