Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 3 de 3
Filtrar
Mais filtros


Bases de dados
Tipo de documento
Intervalo de ano de publicação
1.
Indian J Dermatol Venereol Leprol ; 89(6): 799-806, 2023.
Artigo em Inglês | MEDLINE | ID: mdl-37436019

RESUMO

The Janus kinase (JAK) and Signal Transducer and Activator of Transcription (STAT) pathway has been identified as a key player in the pathophysiology of alopecia areata and a potential target for therapy. Here, we give a narrative review of what is known about Janus kinase inhibitors in alopecia areata. Several clinical trials as well as smaller studies have demonstrated hair regrowth and remission with oral Janus kinase inhibitors therapy, even in patients who failed conventional treatment. Baricitinib is the only US FDA-approved treatment for alopecia areata but data for other oral Janus kinase inhibitors such as tofacitinib, ruxolitinib and ritlecitinib are also promising. Fewer clinical trials have investigated topical Janus kinase inhibitors for alopecia areata, with many of them terminated early due to unfavourable results. Overall, Janus kinase inhibitors are an efficacious addition to the therapeutic arsenal for treatment-refractory alopecia areata. Further work is needed to examine the effects of long-term usage of Janus kinase inhibitors, the efficacy of topical Janus kinase inhibitors, as well as to identify biomarkers that could predict differential therapeutic responses to the various Janus kinase inhibitors.


Assuntos
Alopecia em Áreas , Inibidores de Janus Quinases , Humanos , Alopecia em Áreas/tratamento farmacológico , Inibidores de Janus Quinases/farmacologia , Inibidores de Janus Quinases/uso terapêutico , Alopecia/tratamento farmacológico , Cabelo , Janus Quinases
2.
J Immunol ; 203(4): 911-921, 2019 08 15.
Artigo em Inglês | MEDLINE | ID: mdl-31235553

RESUMO

Th17 cells play a critical role in the adaptive immune response against extracellular bacteria, and the possible mechanisms by which they can protect against infection are of particular interest. In this study, we describe, to our knowledge, a novel IL-1ß dependent pathway for secretion of the antimicrobial peptide IL-26 from human Th17 cells that is independent of and more rapid than classical TCR activation. We find that IL-26 is secreted 3 hours after treating PBMCs with Mycobacterium leprae as compared with 48 hours for IFN-γ and IL-17A. IL-1ß was required for microbial ligand induction of IL-26 and was sufficient to stimulate IL-26 release from Th17 cells. Only IL-1RI+ Th17 cells responded to IL-1ß, inducing an NF-κB-regulated transcriptome. Finally, supernatants from IL-1ß-treated memory T cells killed Escherichia coli in an IL-26-dependent manner. These results identify a mechanism by which human IL-1RI+ "antimicrobial Th17 cells" can be rapidly activated by IL-1ß as part of the innate immune response to produce IL-26 to kill extracellular bacteria.


Assuntos
Imunidade Inata/imunologia , Interleucina-1beta/imunologia , Interleucinas/imunologia , Ativação Linfocitária/imunologia , Células Th17/imunologia , Infecções Bacterianas/imunologia , Humanos , Interleucina-1beta/metabolismo , Interleucinas/metabolismo , Células Th17/microbiologia
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA