Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 3 de 3
Filtrar
Mais filtros


Ano de publicação
Intervalo de ano de publicação
1.
Cell Microbiol ; 16(6): 797-815, 2014 Jun.
Artigo em Inglês | MEDLINE | ID: mdl-24552180

RESUMO

We recently showed that Mycobacterium leprae (ML) is able to induce lipid droplet formation in infected macrophages. We herein confirm that cholesterol (Cho) is one of the host lipid molecules that accumulate in ML-infected macrophages and investigate the effects of ML on cellular Cho metabolism responsible for its accumulation. The expression levels of LDL receptors (LDL-R, CD36, SRA-1, SR-B1, and LRP-1) and enzymes involved in Cho biosynthesis were investigated by qRT-PCR and/or Western blot and shown to be higher in lepromatous leprosy (LL) tissues when compared to borderline tuberculoid (BT) lesions. Moreover, higher levels of the active form of the sterol regulatory element-binding protein (SREBP) transcriptional factors, key regulators of the biosynthesis and uptake of cellular Cho, were found in LL skin biopsies. Functional in vitro assays confirmed the higher capacity of ML-infected macrophages to synthesize Cho and sequester exogenous LDL-Cho. Notably, Cho colocalized to ML-containing phagosomes, and Cho metabolism impairment, through either de novo synthesis inhibition by statins or depletion of exogenous Cho, decreased intracellular bacterial survival. These findings highlight the importance of metabolic integration between the host and bacteria to leprosy pathophysiology, opening new avenues for novel therapeutic strategies to leprosy.


Assuntos
Colesterol/metabolismo , Interações Hospedeiro-Patógeno , Macrófagos/microbiologia , Viabilidade Microbiana , Mycobacterium leprae/fisiologia , Fagossomos/microbiologia , Animais , Western Blotting , Células Cultivadas , Perfilação da Expressão Gênica , Humanos , Hanseníase/tratamento farmacológico , Macrófagos/metabolismo , Camundongos Endogâmicos C57BL , Fagossomos/metabolismo , Reação em Cadeia da Polimerase em Tempo Real , Receptores de LDL/biossíntese , Receptores de LDL/genética , Proteínas de Ligação a Elemento Regulador de Esterol/biossíntese , Proteínas de Ligação a Elemento Regulador de Esterol/genética
2.
s.l; s.n; 2014. 19 p. ilus, tab, graf.
Não convencional em Inglês | SES-SP, HANSEN, HANSENIASE, SESSP-ILSLPROD, SES-SP, SESSP-ILSLACERVO, SES-SP | ID: biblio-1095840

RESUMO

We recently showed that Mycobacterium leprae (ML) is able to induce lipid droplet formation in infected macrophages. We herein confirm that cholesterol (Cho) is one of the host lipid molecules that accumulate in ML-infected macrophages and investigate the effects of ML on cellular Cho metabolism responsible for its accumulation. The expression levels of LDL receptors (LDL-R, CD36, SRA-1, SR-B1, and LRP-1) and enzymes involved in Cho biosynthesis were investigated by qRT-PCR and/or Western blot and shown to be higher in lepromatous leprosy (LL) tissues when compared to borderline tuberculoid (BT) lesions. Moreover, higher levels of the active form of the sterol regulatory element-binding protein (SREBP) transcriptional factors, key regulators of the biosynthesis and uptake of cellular Cho, were found in LL skin biopsies. Functional in vitro assays confirmed the higher capacity of ML-infected macrophages to synthesize Cho and sequester exogenous LDL-Cho. Notably, Cho colocalized to ML-containing phagosomes, and Cho metabolism impairment, through either de novo synthesis inhibition by statins or depletion of exogenous Cho, decreased intracellular bacterial survival. These findings highlight the importance of metabolic integration between the host and bacteria to leprosy pathophysiology, opening new avenues for novel therapeutic strategies to leprosy.


Assuntos
Humanos , Animais , Fagossomos/metabolismo , Fagossomos/microbiologia , Receptores de LDL/biossíntese , Células Cultivadas , Western Blotting , Colesterol/metabolismo , Perfilação da Expressão Gênica , Proteínas de Ligação a Elemento Regulador de Esterol/biossíntese , Viabilidade Microbiana , Interações Hospedeiro-Patógeno , Reação em Cadeia da Polimerase em Tempo Real , Hanseníase/tratamento farmacológico , Macrófagos/metabolismo , Macrófagos/microbiologia , Camundongos Endogâmicos C57BL , Mycobacterium leprae/fisiologia
3.
Cell Microbiol ; 13(2): 259-73, 2011 Feb.
Artigo em Inglês | MEDLINE | ID: mdl-20955239

RESUMO

The predilection of Mycobacterium leprae (ML) for Schwann cells (SCs) leads to peripheral neuropathy, a major concern in leprosy. Highly infected SCs in lepromatous leprosy nerves show a foamy, lipid-laden appearance; but the origin and nature of these lipids, as well as their role in leprosy, have remained unclear. The data presented show that ML has a pronounced effect on host-cell lipid homeostasis through regulation of lipid droplet (lipid bodies, LD) biogenesis and intracellular distribution. Electron microscopy and immunohistochemical analysis of lepromatous leprosy nerves for adipose differentiation-related protein expression, a classical LD marker, revealed accumulating LDs in close association to ML in infected SCs. The capacity of ML to induce LD formation was confirmed in in vitro studies with human SCs. Moreover, via confocal and live-cell analysis, it was found that LDs are promptly recruited to bacterial phagosomes and that this process depends on cytoskeletal reorganization and PI3K signalling. ML-induced LD biogenesis and recruitment were found to be independent of TLR2 bacterial sensing. Notably, LD recruitment impairment by cytoskeleton drugs decreased intracellular bacterial survival. Altogether, our data revealed SC lipid accumulation in ML-containing phagosomes, which may represent a fundamental aspect of bacterial pathogenesis in the nerve.


Assuntos
Metabolismo dos Lipídeos , Mycobacterium leprae/patogenicidade , Fagossomos/microbiologia , Células de Schwann/microbiologia , Células Cultivadas , Citoplasma/química , Citoplasma/ultraestrutura , Citoesqueleto/metabolismo , Humanos , Imuno-Histoquímica , Proteínas de Membrana/análise , Viabilidade Microbiana , Microscopia , Mycobacterium leprae/metabolismo , Perilipina-2 , Fosfatidilinositol 3-Quinases/metabolismo , Transdução de Sinais
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA