Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 5 de 5
Filtrar
Mais filtros


Bases de dados
Tipo de documento
Intervalo de ano de publicação
1.
Plant Dis ; 2022 Mar 06.
Artigo em Inglês | MEDLINE | ID: mdl-35253490

RESUMO

In Hawaii, passionfruit (Passiflora edulis; Passifloraceae) is grown primarily in residential properties and community gardens (CG). In 2019, passionfruit plants displaying chlorotic spots on young leaves, and green spots in senescing leaves were observed at two CG in Honolulu. Symptoms resembled those of passionfruit green spot virus (PfGSV) infection in Passiflora spp. (Ramos-González et al. 2020) and of the hibiscus strain of citrus leprosis virus C2 (CiLV-C2H) infection in hibiscus in Hawaii (Melzer et al. 2013). Both viruses belong to the genus Cilevirus, family Kitaviridae. Total RNA was extracted from two sample pools comprised of 40 symptomatic leaves collected from both the CG following a CTAB-based procedure (Li et al. 2008). To identify the virus associated with the P. edulis infection, reverse transcription (RT)-polymerase chain reaction (PCR) was performed using CiLV-C2 (Olmedo-Velarde et al. 2021) and PfGSV specific primers (Ramos-González et al. 2020). RT-PCR assay amplified the CiLV-C2 amplicon but failed to produce the PfGSV amplicon from infected leaves. Amplicon sequencing followed by a BLASTn search showed the nucleotide sequence had >99% identity with the CiLV-C2H-RNA1 (KC626783). A ribo-depleted RNA library created using the TruSeq Stranded Total RNA Library Prep kit (Illumina) underwent high throughput sequencing (HTS) on a NextSeq550 Illumina platform (2x75 cycles). The 6.5 million raw reads obtained were trimmed, filtered, and de novo assembled using Metaviral SPAdes v. 3.15.02 (Antipov et al. 2020). The resulting contigs were searched against an in-house database generated from GenBank virus and viroid sequences using BLASTn. This identified 12 and 3 contigs corresponding to CiLV-C2H and watermelon mosaic virus, respectively, with the latter being previously reported in passionfruit (Watanabe et al. 2016). RNA1 contigs covered 80.17% of the CiLV-C2H genome, whereas RNA2 contigs covered 94.5% with an average coverage depth of 31.660 and 57.121, respectively. To obtain the near complete genome of CiLV-C2H, gaps from the assembled HTS data were filled by overlapping RT-PCR followed by Sanger sequencing. RNA1 (8,536 nt, Acc. No. MW413437) and RNA2 (4,878 nt, MW413438) genome sequences shared 99.2% and 97.0% identity with CiLV-C2H-RNA1 (KC626783) and -RNA2 (KC626784). To further confirm the presence of CiLV-C2H in symptomatic P. edulis plants, 40 symptomatic leaf samples were individually tested by RT-PCR, and 30 samples were positive. Brevipalpus mites collected from CiLV-C2H-positive P. edulis leaves were transferred to common bean (Phaseolus vulgaris) seedlings (Garita et al. 2013). At 15-30 days post-transfer, RNA extracted from lesions observed in recipient plants tested positive for CiLV-C2H by RT-PCR. Total RNA from individual Brevipalpus mites was isolated, and cDNA was prepared to tentatively identify the mite species involved in CiLV-C2H transmission in passionfruit (Druciarek et al 2019, Olmedo-Velarde et al. 2021). CiLV-C2H was detected in individual mites, and the 28S ribosomal mite RNA sequence (MZ478051) shared 99-100% nucleotide identity with B. yothersi (MK293678 and MT812697), a vector of CiLV-C2 (Roy et al. 2013). CiLV-C2 currently has a host range limited to the families Malvaceae, Araceae, and Rutaceae (Roy et al. 2015). CiLV-C2H infects hibiscus alone and citrus in mixed infection with CiLV-C2 (Roy et al; 2018) which is responsible for causing citrus leprosis disease. Detection of CiLV-C2H in passionfruit expands the number of host families of CiLV-C2H.

2.
Front Plant Sci ; 13: 1058847, 2022.
Artigo em Inglês | MEDLINE | ID: mdl-36762187

RESUMO

Citrus leprosis (CiL) is one of the destructive emerging viral diseases of citrus in the Americas. Leprosis syndrome is associated with two taxonomically distinct groups of Brevipalpus-transmitted viruses (BTVs), that consist of positive-sense Cilevirus, Higrevirus, and negative-sense Dichorhavirus. The localized CiL symptoms observed in multiple citrus species and other alternate hosts indicates that these viruses might have originated from the mites and eventually adopted citrus as a secondary host. Genetic diversity in the genomes of viruses associated with the CiL disease complex have complicated current detection and diagnostic measures that prompted the application of High-Throughput Sequencing (HTS) protocols for improved detection and diagnosis. Two cileviruses are known to infect citrus, and among them only citrus leprosis virus C2 (CiLV-C2) hibiscus strain (CiLV-C2H) has been reported in hibiscus and passion fruit in the US. Based on our current CiL disease complex hypothesis, there is a high probability that CiL disease is associated with more viruses/strains that have not yet been identified but exist in nature. To protect the citrus industry, a Ribo-Zero HTS protocol was utilized for detection of cileviruses infecting three different hosts: Citrus spp., Swinglea glutinosa, and Hibiscus rosa-sinensis. Real-time RT-PCR assays were used to identify plants infected with CiLV-C2 or CiLV-C2H or both in mixed infection in all the above-mentioned plant genera. These results were further confirmed by bioinformatic analysis using HTS generated data. In this study, we utilized HTS assay in confirmatory diagnostics to screen BTVs infecting Dieffenbachia sp. (family: Araceae), Passiflora edulis (Passifloraceae), and Smilax auriculata (Smilacaceae). Through the implementation of HTS and downstream data analysis, we detected not only the known cileviruses in the studied hosts but also discovered a new strain of CiLV-C2 in hibiscus from Colombia. Phylogenetically, the new hibiscus strain is more closely related to CiLV-C2 than the known hibiscus strain, CiLV-C2H. We propose this strain to be named as CiLV-C2 hibiscus strain 2 (CiLV-C2H2). The findings from the study are critical for citrus growers, industry, regulators, and researchers. The possible movement of CiLV-C2H2 from hibiscus to citrus by the Brevipalpus spp. warrants further investigation.

3.
Plant Dis ; 2021 Mar 03.
Artigo em Inglês | MEDLINE | ID: mdl-33656365

RESUMO

Citrus leprosis is an economically important disease of citrus in South and Central America. The disease can be caused by several non-systemic viruses belonging to the genera Cilevirus (family Kitaviridae) and Dichorhavirus (family Rhabdoviridae) (Roy et al. 2015; Freitas-Astúa et al. 2018). In February 2020, lesions consistent with citrus leprosis were observed on the leaves and stems of rough lemon (Citrus jambhiri) and mandarin (C. reticulata) trees in Hilo, Hawaii. Brevipalpus mites, vector of orchid fleck virus (OFV), were also present on these trees (Freitas-Astúa et al. 2018). To identify the virus associated with the symptoms, total RNA was isolated using a NucleoSpin RNA Plus kit (Macherey-Nagel) and underwent reverse transcription (RT)-PCR with two newly designed universal primers specific for dichorhaviruses (Dichora-R1-F1: 5`-CAYCACTGYGCBRTNGCWGATGA, Dichora-R1-R1: 5`-AGKATRTSWGCCATCCKGGCTATBAG). The expected ~350 bp amplicon was obtained and directly sequenced in both directions. Blastn and Blastx searches revealed that the primer-trimmed consensus sequence (MT232917) shared 99.3% nucleotide (nt) and 100% amino acid (aa) identity with an OFV isolate from Germany (AF321775). OFV has two orchid- (OFV-Orc1 and OFV-Orc2) and two citrus- (OFV-Cit1 and OFV-Cit2) infecting strains (Roy et al. 2020). However, an isolate of OFV-Orc1 has recently been associated with citrus leprosis in South Africa (Cook et al. 2019). To confirm the presence of OFV in Hawaiian citrus and identify the strain, symptomatic tissue was submitted to USDA-APHIS-PPQ-S&T where total RNA were extracted from the symptomatic tissue using RNeasy Plant Mini kit (Qiagen). The RNA samples were tested with OFV-Orc and OFV-Cit generic and specific primers in a conventional RT-PCR assay following optimized RT-PCR protocols (Roy et al. 2020). Two additional sets of generic primers (OFV-Orc-GPF: 5'-AGCGATAACGACCTTGATATGACACC, OFV-Orc-GPR: 5'-TGAGTGGTAGTCAATG CTCCATCAT and OFV-R2-GF1: 5'- CARTGTCAGGAGGATGCATGGAA, OFV-R2-GR: 5'- GACCTGCTTGATGTAATTGCTTCCTTC') were designed based on available OFV phospho (P) and large (L) polyprotein gene sequences in GenBank. These assays detected OFV-Orc2 in the symptomatic citrus samples, with the nucleocapsid (1353 bp), P (626 bp), and L (831 bp) gene sequences sharing 97 to 98% identity with published OFV-Orc2 sequences (AB244417 and AB516441). Ribo-depleted RNA (Ribo-Zero, Illumina) was prepared using a TruSeq Stranded Total RNA Library Prep kit (Illumina) and underwent high throughput sequencing (HTS) on a MiSeq platform (Illumina). The resulting 19.6 million 2x75bp reads were de novo assembled using SPAdes v. 3.10.0 (Bankevitch et al. 2012). In addition to sequences corresponding to citrus tristeza virus and citrus vein enation virus, two contigs of 6,412 nt (average depth 18,821; MW021482) and 5,986 nt (average depth 19,278; MW021483), were found to have ≥98% identity to RNA1 (AB244417) and RNA2 (AB244418) of OFV isolate So (Japan), respectively. This is the first report of OFV in Hawaii and the first time leprosis has been observed in the USA since it was eradicated from Florida in the 1960s, although that outbreak was attributed to infection by citrus leprosis virus-N0, a distant relative of OFV (Hartung et al. 2015). The recent detection of citrus leprosis associated with OFV infection in South Africa (Cook et al. 2019) and now Hawaii underscores the threat this pathogen poses to the global citrus industry.

4.
Phytopathology ; 105(4): 564-75, 2015 Apr.
Artigo em Inglês | MEDLINE | ID: mdl-25423071

RESUMO

Citrus leprosis is one of the most destructive diseases of Citrus spp. and is associated with two unrelated virus groups that produce particles primarily in either the cytoplasm or nucleus of infected plant cells. Symptoms of leprosis, including chlorotic spots surrounded by yellow haloes on leaves and necrotic spots on twigs and fruit, were observed on leprosis-affected mandarin and navel sweet orange trees in the state of Querétaro, Mexico. Serological and molecular assays showed that the cytoplasmic types of Citrus leprosis virus (CiLV-C) often associated with leprosis symptomatic tissues were absent. However, using transmission electron microscopy, bullet-shaped rhabdovirus-like virions were observed in the nuclei and cytoplasm of the citrus leprosis-infected leaf tissues. An analysis of small RNA populations from symptomatic tissue was carried out to determine the genome sequence of the rhabdovirus-like particles observed in the citrus leprosis samples. The complete genome sequence showed that the nuclear type of CiLV (CiLV-N) present in the samples consisted of two negative-sense RNAs: 6,268-nucleotide (nt)-long RNA1 and 5,847-nt-long RNA2, excluding the poly(A) tails. CiLV-N had a genome organization identical to that of Orchid fleck virus (OFV), with the exception of shorter 5' untranslated regions in RNA1 (53 versus 205 nt) and RNA2 (34 versus 182 nt). Phylogenetic trees constructed with the amino acid sequences of the nucleocapsid (N) and glycoproteins (G) and the RNA polymerase (L protein) showed that CiLV-N clusters with OFV. Furthermore, phylogenetic analyses of N protein established CiLV-N as a member of the proposed genus Dichorhavirus. Reverse-transcription polymerase chain reaction primers for the detection of CiLV-N were designed based on the sequence of the N gene and the assay was optimized and tested to detect the presence of CiLV-N in both diseased and symptom-free plants.


Assuntos
Citrus/virologia , Doenças das Plantas/virologia , Vírus de Plantas/classificação , Vírus de RNA/classificação , Sequência de Aminoácidos , DNA Complementar/química , DNA Complementar/genética , Frutas/virologia , Biblioteca Gênica , Sequenciamento de Nucleotídeos em Larga Escala , México , Dados de Sequência Molecular , Nucleocapsídeo/genética , Filogenia , Folhas de Planta/virologia , Vírus de Plantas/genética , Vírus de Plantas/ultraestrutura , Vírus de RNA/genética , Vírus de RNA/ultraestrutura , RNA Viral/genética , Alinhamento de Sequência , Análise de Sequência de DNA , Vírion
5.
Genome Announc ; 1(4)2013 Jul 25.
Artigo em Inglês | MEDLINE | ID: mdl-23887919

RESUMO

The complete genome of citrus leprosis virus nuclear type (CiLV-N) was identified by small RNA sequencing utilizing leprosis-affected citrus samples collected from the state of Querétaro, Mexico. The nucleotide identity and phylogenetic analysis indicate that CiLV-N is very closely related to orchid fleck virus, which typically infects Cymbidium species.

SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA