Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 3 de 3
Filtrar
Mais filtros


Bases de dados
Tipo de documento
Intervalo de ano de publicação
1.
Anal Bioanal Chem ; 411(30): 7997-8009, 2019 Dec.
Artigo em Inglês | MEDLINE | ID: mdl-31732785

RESUMO

A common technique used to differentiate bacterial species and to determine evolutionary relationships is sequencing their 16S ribosomal RNA genes. However, this method fails when organisms exhibit high similarity in these sequences. Two such strains that have identical 16S rRNA sequences are Mycobacterium indicus pranii (MIP) and Mycobacterium intracellulare. MIP is of significance as it is used as an adjuvant for protection against tuberculosis and leprosy; in addition, it shows potent anti-cancer activity. On the other hand, M. intracellulare is an opportunistic pathogen and causes severe respiratory infections in AIDS patients. It is important to differentiate these two bacterial species as they co-exist in immuno-compromised individuals. To unambiguously distinguish these two closely related bacterial strains, we employed Raman and resonance Raman spectroscopy in conjunction with multivariate statistical tools. Phenotypic profiling for these bacterial species was performed in a kinetic manner. Differences were observed in the mycolic acid profile and carotenoid pigments to show that MIP is biochemically distinct from M. intracellulare. Resonance Raman studies confirmed that carotenoids were produced by both MIP as well as M. intracellulare, though the latter produced higher amounts. Overall, this study demonstrates the potential of Raman spectroscopy in differentiating two closely related mycobacterial strains. Graphical abstract.


Assuntos
Complexo Mycobacterium avium/classificação , Mycobacterium/classificação , Análise Espectral Raman/métodos , Genes Bacterianos , Mycobacterium/genética , Complexo Mycobacterium avium/genética , RNA Ribossômico 16S/genética , Especificidade da Espécie
2.
Curr Protein Pept Sci ; 19(2): 155-171, 2018.
Artigo em Inglês | MEDLINE | ID: mdl-28707598

RESUMO

Cells possess protein quality control mechanisms to maintain proper cellular homeostasis. In eukaryotes, the roles of the ubiquitination and proteasome-mediated degradation of cellular proteins is well established. Recent studies have elucidated protein tagging mechanisms in prokaryotes, involving transfer messenger RNA (tmRNA) and pupylation. In this review, newer insights and bioinformatics analysis of two distinct bacterial protein tagging machineries are discussed. The machinery for tmRNAmediated tagging is present in several eubacterial representatives, e.g. Escherichia coli, Mycobacterium tuberculosis, Bacillus subtilis etc., but not in two archaeal representatives, such as Thermoplasma acidophilum and Sulfolobus solfataricus. On the other hand, the machinery involving tagging with the prokaryotic ubiquitin-like protein (Pup) is absent in most bacteria but is encoded in some eubacterial representatives, e.g. Mycobacterium tuberculosis and Mycobacterium leprae. Furthermore, molecular details on the relationship between protein tagging and enzymes involved in protein degradation in bacteria during infection are emerging. Several pathogenic bacteria that do not express the major ATP-dependent proteases, Lon and Caseinolytic protease (ClpP), are avirulent. Also, some ATP-independent peptidases, such as PepA and PepN, modulate the infection process. The roles of bacterial proteins involved in tagging and degradation during infection are discussed. These aspects add a new dimension to better understanding of the peculiarities of host-pathogen interactions.


Assuntos
Proteínas Arqueais/metabolismo , Bactérias/metabolismo , Proteínas de Bactérias/metabolismo , RNA Bacteriano/metabolismo , Animais , Archaea/metabolismo , Proteínas Arqueais/genética , Bactérias/patogenicidade , Infecções Bacterianas/microbiologia , Proteínas de Bactérias/genética , Interações Hospedeiro-Patógeno , Humanos , Peptídeo Hidrolases/metabolismo , Conformação Proteica , Processamento de Proteína Pós-Traducional , Proteólise , Ubiquitina/metabolismo , Ubiquitinação
3.
Int J Cancer ; 130(4): 865-75, 2012 Feb 15.
Artigo em Inglês | MEDLINE | ID: mdl-21455983

RESUMO

Mycobacterium indicus pranii (MIP) is approved for use as an adjuvant (Immuvac/Cadi-05) in the treatment of leprosy. In addition, its efficacy is being investigated in clinical trials on patients with tuberculosis and different tumors. To evaluate and delineate the mechanisms by which autoclaved MIP enhances anti-tumor responses, the growth of solid tumors consisting of Sp2/0 (myeloma) and EL4 (thymoma) cells was studied in BALB/c and C57BL/6 mice, respectively. Treatment of mice with a single intra-dermal (i.d.) injection of MIP 3 days after Sp2/0 implantation greatly suppresses tumor growth. MIP treatment of tumor bearing mice lowers Interleukin (IL)6 but increases IL12p70 and IFNγ amounts in sera. Also, increase in CD8(+) T cell mediated lysis of specific tumor targets and production of high amounts of IL2 and IFNγ by CD4(+) T cells upon stimulation with specific tumor antigens in MIP treated mice is observed. Furthermore, MIP is also effective in reducing the growth of EL4 tumors; however, this efficacy is reduced in Ifnγ(-/-) mice. In fact, several MIP mediated anti-tumor responses are greatly abrogated in Ifnγ(-/-) mice: increase in serum Interleukin (IL)12p70 amounts, induction of IL2 and lysis of EL4 targets by splenocytes upon stimulation with specific tumor antigens. Interestingly, tumor-induced increase in serum IL12p70 and IFNγ and reduction in growth of Sp2/0 and EL4 tumors by MIP are not observed in nonobese diabetic severe combined immunodeficiency mice. Overall, our study clearly demonstrates the importance of a functional immune network, in particular endogenous CD4(+) and CD8(+) T cells and IFNγ, in mediating the anti-tumor responses by MIP.


Assuntos
Adjuvantes Imunológicos/farmacologia , Citotoxicidade Imunológica , Interferon gama/fisiologia , Mycobacterium/imunologia , Neoplasias Experimentais/terapia , Linfócitos T/imunologia , Adjuvantes Imunológicos/uso terapêutico , Animais , Linfócitos T CD8-Positivos/imunologia , Linhagem Celular Tumoral , Camundongos , Camundongos Endogâmicos BALB C , Camundongos Endogâmicos C57BL , Células Th1/imunologia
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA