Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 4 de 4
Filtrar
Mais filtros


Bases de dados
Tipo de documento
Intervalo de ano de publicação
1.
J Chem Phys ; 146(16): 164105, 2017 Apr 28.
Artigo em Inglês | MEDLINE | ID: mdl-28456208

RESUMO

The Coupled-Cluster expansion, truncated after single and double excitations (CCSD), provides accurate and reliable molecular electronic wave functions and energies for many molecular systems around their equilibrium geometries. However, the high computational cost, which is well-known to scale as O(N6) with system size N, has limited its practical application to small systems consisting of not more than approximately 20-30 atoms. To overcome these limitations, low-order scaling approximations to CCSD have been intensively investigated over the past few years. In our previous work, we have shown that by combining the pair natural orbital (PNO) approach and the concept of orbital domains it is possible to achieve fully linear scaling CC implementations (DLPNO-CCSD and DLPNO-CCSD(T)) that recover around 99.9% of the total correlation energy [C. Riplinger et al., J. Chem. Phys. 144, 024109 (2016)]. The production level implementations of the DLPNO-CCSD and DLPNO-CCSD(T) methods were shown to be applicable to realistic systems composed of a few hundred atoms in a routine, black-box fashion on relatively modest hardware. In 2011, a reduced-scaling CCSD approach for high-spin open-shell unrestricted Hartree-Fock reference wave functions was proposed (UHF-LPNO-CCSD) [A. Hansen et al., J. Chem. Phys. 135, 214102 (2011)]. After a few years of experience with this method, a few shortcomings of UHF-LPNO-CCSD were noticed that required a redesign of the method, which is the subject of this paper. To this end, we employ the high-spin open-shell variant of the N-electron valence perturbation theory formalism to define the initial guess wave function, and consequently also the open-shell PNOs. The new PNO ansatz properly converges to the closed-shell limit since all truncations and approximations have been made in strict analogy to the closed-shell case. Furthermore, given the fact that the formalism uses a single set of orbitals, only a single PNO integral transformation is necessary, which offers large computational savings. We show that, with the default PNO truncation parameters, approximately 99.9% of the total CCSD correlation energy is recovered for open-shell species, which is comparable to the performance of the method for closed-shells. UHF-DLPNO-CCSD shows a linear scaling behavior for closed-shell systems, while linear to quadratic scaling is obtained for open-shell systems. The largest systems we have considered contain more than 500 atoms and feature more than 10 000 basis functions with a triple-ζ quality basis set.

2.
J Chem Phys ; 138(3): 034106, 2013 Jan 21.
Artigo em Inglês | MEDLINE | ID: mdl-23343267

RESUMO

In previous publications, it was shown that an efficient local coupled cluster method with single- and double excitations can be based on the concept of pair natural orbitals (PNOs) [F. Neese, A. Hansen, and D. G. Liakos, J. Chem. Phys. 131, 064103 (2009)]. The resulting local pair natural orbital-coupled-cluster single double (LPNO-CCSD) method has since been proven to be highly reliable and efficient. For large molecules, the number of amplitudes to be determined is reduced by a factor of 10(5)-10(6) relative to a canonical CCSD calculation on the same system with the same basis set. In the original method, the PNOs were expanded in the set of canonical virtual orbitals and single excitations were not truncated. This led to a number of fifth order scaling steps that eventually rendered the method computationally expensive for large molecules (e.g., >100 atoms). In the present work, these limitations are overcome by a complete redesign of the LPNO-CCSD method. The new method is based on the combination of the concepts of PNOs and projected atomic orbitals (PAOs). Thus, each PNO is expanded in a set of PAOs that in turn belong to a given electron pair specific domain. In this way, it is possible to fully exploit locality while maintaining the extremely high compactness of the original LPNO-CCSD wavefunction. No terms are dropped from the CCSD equations and domains are chosen conservatively. The correlation energy loss due to the domains remains below <0.05%, which implies typically 15-20 but occasionally up to 30 atoms per domain on average. The new method has been given the acronym DLPNO-CCSD ("domain based LPNO-CCSD"). The method is nearly linear scaling with respect to system size. The original LPNO-CCSD method had three adjustable truncation thresholds that were chosen conservatively and do not need to be changed for actual applications. In the present treatment, no additional truncation parameters have been introduced. Any additional truncation is performed on the basis of the three original thresholds. There are no real-space cutoffs. Single excitations are truncated using singles-specific natural orbitals. Pairs are prescreened according to a multipole expansion of a pair correlation energy estimate based on local orbital specific virtual orbitals (LOSVs). Like its LPNO-CCSD predecessor, the method is completely of black box character and does not require any user adjustments. It is shown here that DLPNO-CCSD is as accurate as LPNO-CCSD while leading to computational savings exceeding one order of magnitude for larger systems. The largest calculations reported here featured >8800 basis functions and >450 atoms. In all larger test calculations done so far, the LPNO-CCSD step took less time than the preceding Hartree-Fock calculation, provided no approximations have been introduced in the latter. Thus, based on the present development reliable CCSD calculations on large molecules with unprecedented efficiency and accuracy are realized.

3.
J Chem Phys ; 135(21): 214102, 2011 Dec 07.
Artigo em Inglês | MEDLINE | ID: mdl-22149774

RESUMO

A production level implementation of the high-spin open-shell (spin unrestricted) single reference coupled pair, quadratic configuration interaction and coupled cluster methods with up to doubly excited determinants in the framework of the local pair natural orbital (LPNO) concept is reported. This work is an extension of the closed-shell LPNO methods developed earlier [F. Neese, F. Wennmohs, and A. Hansen, J. Chem. Phys. 130, 114108 (2009); F. Neese, A. Hansen, and D. G. Liakos, J. Chem. Phys. 131, 064103 (2009)]. The internal space is spanned by localized orbitals, while the external space for each electron pair is represented by a truncated PNO expansion. The laborious integral transformation associated with the large number of PNOs becomes feasible through the extensive use of density fitting (resolution of the identity (RI)) techniques. Technical complications arising for the open-shell case and the use of quasi-restricted orbitals for the construction of the reference determinant are discussed in detail. As in the closed-shell case, only three cutoff parameters control the average number of PNOs per electron pair, the size of the significant pair list, and the number of contributing auxiliary basis functions per PNO. The chosen threshold default values ensure robustness and the results of the parent canonical methods are reproduced to high accuracy. Comprehensive numerical tests on absolute and relative energies as well as timings consistently show that the outstanding performance of the LPNO methods carries over to the open-shell case with minor modifications. Finally, hyperfine couplings calculated with the variational LPNO-CEPA∕1 method, for which a well-defined expectation value type density exists, indicate the great potential of the LPNO approach for the efficient calculation of molecular properties.


Assuntos
Simulação por Computador , Modelos Moleculares , Teoria Quântica , Algoritmos , Benzoquinonas/química , Análise por Conglomerados , Hidrogenase/química , Conformação Molecular , Penicilinas/química , Termodinâmica
4.
J Chem Phys ; 122(4): 44110, 2005 Jan 22.
Artigo em Inglês | MEDLINE | ID: mdl-15740238

RESUMO

The ability of different density functionals to describe the structural and energy differences between the high- [(5)T(2g):(t(2g))(4)(e(g))(2)] and low- [(1)A(1g):(t(2g))(6)(e(g))(0)] spin states of small octahedral ferrous compounds is studied. This work is an extension of our previous study of the hexaquoferrous cation, [Fe(H(2)O)(6)](2+), [J. Chem. Phys. 120, 9473 (2004)] to include a second compound-namely, the hexaminoferrous cation, [Fe(NH(3))(6)](2+)-and several additional functionals. In particular, the present study includes the highly parametrized generalized gradient approximations (GGAs) known as HCTH and the meta-GGA VSXC [which together we refer to as highly parametrized density functionals (HPDFs)], now readily available in the GAUSSIAN03 program, as well as the hybrid functional PBE0. Since there are very few experimental results for these molecules with which to compare, comparison is made with best estimates obtained from second-order perturbation theory-corrected complete active space self-consistent field (CASPT2) calculations, with spectroscopy oriented configuration interaction (SORCI) calculations, and with ligand field theory (LFT) estimations. While CASPT2 and SORCI are among the most reliable ab initio methods available for this type of problem, LFT embodies many decades of empirical experience. These three methods are found to give coherent results and provide best estimates of the adiabatic low-spin-high-spin energy difference, DeltaE(LH) (adia), of 12 000-13 000 cm(-1) for [Fe(H(2)O)(6)](2+) and 9 000-11 000 cm(-1) for [Fe(NH(3))(6)](2+). All functionals beyond the purely local approximation produce reasonably good geometries, so long as adequate basis sets are used. In contrast, the energy splitting, DeltaE(LH) (adia), is much more sensitive to the choice of functional. The local density approximation severely over stabilizes the low-spin state with respect to the high-spin state. This "density functional theory (DFT) spin pairing-energy problem" persists, but is reduced, for traditional GGAs. In contrast the hybrid functional B3LYP underestimates DeltaE(LH) (adia) by a few thousands of wave numbers. The RPBE GGA of Hammer, Hansen, and Norskov gives good results for DeltaE(LH) (adia) as do the HPDFs, especially the VSXC functional. Surprisingly the HCTH functionals actually over correct the DFT spin pairing-energy problem, destabilizing the low-spin state relative to the high-spin state. Best agreement is found for the hybrid functional PBE0.

SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA