Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 2 de 2
Filtrar
Mais filtros


Bases de dados
Ano de publicação
Tipo de documento
Intervalo de ano de publicação
1.
Food Microbiol ; 95: 103678, 2021 May.
Artigo em Inglês | MEDLINE | ID: mdl-33397613

RESUMO

Beer production is predominantly carried out by Saccharomyces species, such as S. cerevisiae and S. pastorianus. However, the introduction of non-Saccharomyces yeasts in the brewing process is now seen as a promising strategy to improve and differentiate the organoleptic profile of beer. In this study, 17 non-Saccharomyces strains of 12 distinct species were isolated and submitted to a preliminary sensory evaluation to determine their potential for beer bioflavouring. Hanseniaspora guilliermondii IST315 and H. opuntiae IST408 aroma profiles presented the highest acceptability and were described as having 'fruity' and 'toffee' notes, respectively. Their presence in mixed-culture fermentations with S. cerevisiae US-05 did not influence attenuation and ethanol concentration of beer but had a significant impact in its volatile composition. Notably, while both strains reduced the total amount of ethyl esters, H. guilliermondii IST315 greatly increased the concentration of acetate esters, especially when sequentially inoculated, leading to an 8.2-fold increase in phenylethyl acetate ('rose', 'honey' aroma) in the final beverage. These findings highlight the importance of non-Saccharomyces yeasts in shaping the aroma profile of beer and suggest a role for Hanseniaspora spp. in improving it.


Assuntos
Cerveja/análise , Hanseniaspora/metabolismo , Saccharomyces cerevisiae/metabolismo , Cerveja/microbiologia , Técnicas de Cocultura , Etanol/metabolismo , Fermentação , Aromatizantes/análise , Aromatizantes/metabolismo , Humanos , Odorantes/análise , Paladar , Compostos Orgânicos Voláteis/análise , Compostos Orgânicos Voláteis/metabolismo
2.
FEMS Yeast Res ; 9(4): 526-34, 2009 Jun.
Artigo em Inglês | MEDLINE | ID: mdl-19459981

RESUMO

The sugar porter family in yeasts encompasses a wide variety of transporters including the hexose transporters and glucose sensors. We analysed a total of 75 members from both groups in nine hemiascomycetous species, with complete and well-annotated genomes: Saccharomyces cerevisiae, Candida glabrata, Zygosaccharomyces rouxii, Kluyveromyces thermotolerans, Saccharomyces kluyverii, Kluyveromyces lactis, Eremothecium gossypii, Debaryomyces hansenii and Yarrowia lipolytica. We present a model for the evolution of the hexose transporters and glucose sensors, supported by two types of complementary evidences: phylogeny and neighbourhood analysis. Five lineages of evolution were identified and discussed according to different mechanisms of gene evolution: lineage A for HXT1, HXT3, HXT4, HXT5, HXT6 and HXT7; lineage B for HXT2 and HXT10; lineage C for HXT8; lineage D for HXT14; and lineage E for SNF3 and RGT2.


Assuntos
Ascomicetos/genética , Proteínas de Transporte de Monossacarídeos/genética , Filogenia , Receptores de Superfície Celular/genética , Leveduras/genética , Análise por Conglomerados , Evolução Molecular , Homologia de Sequência de Aminoácidos
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA