Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 3 de 3
Filtrar
Mais filtros


Bases de dados
Tipo de documento
Intervalo de ano de publicação
1.
J Agric Food Chem ; 54(12): 4430-5, 2006 Jun 14.
Artigo em Inglês | MEDLINE | ID: mdl-16756377

RESUMO

Hydrolysates obtained by autohydrolysis-posthydrolysis of corncobs were detoxified with charcoal, concentrated, supplemented with nutrients, and fermented with Debaryomyces hansenii. After biomass removal, the fermented media contained 0.1137 kg of nonvolatile components (NVC)/kg of liquor, which corresponded mainly to xylitol (0.6249 kg/kg of NVC) but also to minor amounts of inorganic components (measured as ashes), proteins, nonfermented sugars (xylose and arabinose), uronic acids, arabitol, and other nonvolatile components (ONVC). The media were subjected to further processing (sequential stages of adsorption, concentration, ethanol precipitation, concentration, and crystallization) to obtain food-grade xylitol. Adsorption experiments were carried out at various solid-to-liquor ratios. Under selected conditions (1 kg of charcoal/15 kg of liquors), the xylitol content increased to 0.6873 kg/kg of NVC, and almost total decoloration was achieved. The resulting liquor was concentrated by evaporation to increase its NVC content to 0.4032 kg/kg of liquor (corresponding to a xylitol concentration of 0.280 kg/kg of liquor), and ethanol was added to precipitate a part of the NVC (mainly proteins, but also uronic acids, ashes, and other nonvolatile compounds). Refined liquors (containing 0.7303 kg of xylitol/kg of NVC) were concentrated again, and ethanol was added (to reach 40-60% volume of the stream) to allow crystallization at -10 or -5 degrees C. Under selected conditions, 43.7% of xylitol contained in the initial fermentation broth was recovered in well-formed, homogeneous crystals, in which xylitol accounted for 98.9% of the total oven-dry weight. Material balances are presented for the whole processing scheme considered in this work.


Assuntos
Fermentação , Xilitol/isolamento & purificação , Zea mays/química , Adsorção , Carvão Vegetal , Precipitação Química , Cristalização , Etanol , Hidrólise , Saccharomycetales/metabolismo , Xilitol/metabolismo , Zea mays/microbiologia
2.
Appl Biochem Biotechnol ; 113-116: 1041-58, 2004.
Artigo em Inglês | MEDLINE | ID: mdl-15054252

RESUMO

A readily fermentable pentose-containing hydrolysate was obtained from Brewery's spent grain by a two-step process consisting of an auto-hydrolysis (converting the hemicelluloses into oligosaccharides) followed by an enzymatic or sulfuric acid-catalyzed posthydrolysis (converting the oligosaccharides into monosaccharides). Enzymatic hydrolyses were performed with several commercial enzymes with xylanolytic and cellulolytic activities. Acid-catalyzed hydrolyses were carried out at 121 degrees C under various sulfuric acid concentrations and reaction times, and the effects of treatments were interpreted by means of a corrected combined severity factor (CS*), which varied in the range of 0.80-2.01. Under the tested conditions, chemical hydrolysis allowed higher pentose yields than enzymatic hydrolysis. Optimized conditions (defined by CS* = 1.10) allowed both complete monosaccharide recovery and low content of inhibitors. Liquors subjected to posthydrolysis under optimal conditions were easily fermented by Debaryomyces hansenii CCMI 941 in semiaerobic shake-flask experiments, leading to xylitol and arabitol as major fermentation products. The bioconversion process was improved by hydrolysate concentration and supplementation of fermentation media with casamino acids.


Assuntos
Biotecnologia/métodos , Meios de Cultura/química , Grão Comestível/química , Hidrólise , Pentoses/química , Bebidas Alcoólicas , Aminoácidos/química , Fermentação , Resíduos Industriais , Cinética , Fenol/química , Temperatura , Fatores de Tempo , Xilitol/química
3.
Biotechnol Prog ; 19(3): 706-13, 2003.
Artigo em Inglês | MEDLINE | ID: mdl-12790628

RESUMO

The effect of oxygenation on xylitol production by the yeast Debaryomyces hansenii has been investigated in this work using the liquors from corncob hydrolysis as the fermentation medium. The concentrations of consumed substrates (glucose, xylose, arabinose, acetate and oxygen) and formed products (xylitol, arabitol, ethanol, biomass and carbon dioxide) have been used, together with those previously obtained varying the hydrolysis technique, the level of adaptation of the microorganism, the sterilization procedure and the initial substrate and biomass concentrations, in carbon material balances to evaluate the percentages of xylose consumed by the yeast for the reduction to xylitol, alcohol fermentation, respiration and cell growth. The highest xylitol concentration (71 g/L) and volumetric productivity (1.5 g/L.h) were obtained semiaerobically using detoxified hydrolyzate produced by autohydrolysis-posthydrolysis, at starting levels of xylose (S(0)) and biomass (X(0)) of about 100 g/L and 12 g(DM)/L, respectively. No less than 80% xylose was addressed to xylitol production under these conditions. The experimental data collected in this work at variable oxygen levels allowed estimating a P/O ratio of 1.16 mol(ATP)/mol(O). The overall ATP requirements for biomass production and maintenance demonstrated to remarkably increase with X(0) and for S(0) >or= 130 g/L and to reach minimum values (1.9-2.1 mol(ATP)/C-mol(DM)) just under semiaerobic conditions favoring xylitol accumulation.


Assuntos
Trifosfato de Adenosina/metabolismo , Reatores Biológicos/microbiologia , Modelos Biológicos , Saccharomycetales/crescimento & desenvolvimento , Saccharomycetales/metabolismo , Xilitol/biossíntese , Xilose/metabolismo , Zea mays/química , Adaptação Fisiológica/fisiologia , Carbono/metabolismo , Simulação por Computador , Metabolismo Energético/fisiologia , Transferência de Energia/fisiologia , Hidrólise , Consumo de Oxigênio/fisiologia , Extratos Vegetais/metabolismo
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA